Moldex3D模流分析之成功验证异型水路提升冷却效能

株式会社松井制作所案例

以下的案例将就传统水路和异型水路设计的冷却结果作比较。下图为几何复杂且厚度变化极大的产品模型。使用异型水路设计将可大幅降低冷却时间逾33% (10秒)。传统的冷却水路无法贴近产品的几何外形,冷却效果受到局限,在几何复杂的产品上尤为明显。如今,日益月新的制程技术实现了异型水路设计,然而,冷却系统的验证和设计仍因产品的复杂度而备受考验。

Moldex3D冷却分析不仅提供所需的冷却时间,更可进一步提供模内的温度变化。此外,冷却行为如:流率、压力损失、涡旋与死水区域,都可透过Moldex3D真实三维冷却系统分析获得预测结果。要达到异型水路和冷却效率优化不再是遥不可及。

Moldex3D 的异型水路解决方案有:

  • 大幅提升冷却效率。异型水路可以将整体的冷却速率差异降低。

  • 减少生产周期和成本

  • 确保较佳产品质量

本案例的产品规格如下:

  • 长度:23 mm

  • 宽度:15 mm

  • 高度:51 mm

  • 主要的厚度:约3 mm

我们将以这个案例进行传统水路和异型水路的比较;传统的冷却水路设计在公模侧是使用隔板式水路,然而,异型水路则可以依产品而行,满足多变的设计。

图片1.jpg

异型水路设计距离模穴表面等距离,然而,由于受到几何模型的限制,冷却水路仍然无法深入许多地方。在这个案例中,冷却水路的平均值直径是4公厘,模穴与水管相距8.3公厘,水管间则是相距9公厘。,

以下为一些水路设计的模拟结果:

传统的水路设计在冷却结束时的塑件表面温度如下所示,温度从60.04-134.02℃。模穴壁的温度分布相当低且一致;然而,在公模侧,塑件的表面温度会因区域而异。红色圈选处为最高温,很明显地看出,并无水路经过该处。

图片2.jpg

以下的图显示圈选处所需的冷却时间。冷却时间指的是从保压结束之后到脱模,如数值所显示,冷却所需时间约为101.55秒,默认值(20秒)不足。

 

Moldex3D模流分析之成功验证异型水路提升冷却效能的图3

冷却结束时的表面温度分布如下图所示,温布从57.82-129.95 ℃,低于传统水路设计,除此之外,公模侧的温度分布,异型水路的设计也比传统设计更均匀。

图片4.jpg

如果我们将两组案例设定同样的温度范围,我们可以看到异型水路组能有效移除公模侧大部分的热量,然而,最高温的区域因为没有水路经过,依然存在(红色圈选处)。

图片5.jpg

以下是冷却效率的比较,在传统的设计里,由于隔板式水路无法接触产品公模侧表面,处于较低的冷却水路只能吸收三分之一的总热量。然而,在异型水路的设计中,贴近产品公模侧表面水路的冷却效率(53.73%)就远高于下方隔板式水路的冷却效率(1.16%)。

                                        

图片6.png



生产的周期时间是考虑水路设计的重点之一,比较传统设计,异型水路设计可以减少10秒的周期,将近33%。

Moldex3D模流分析之成功验证异型水路提升冷却效能的图7

举例来说,可以将凹痕值作检视产品质量的指针。以下为传统水路设计(冷却30秒)和异型水路设计(冷却20秒)的凹痕比较图。我们可以由下图中可看出所示的两种水路设计凹痕预测值,异形水路的最大值较小。但是在红色圈圈处的值却接近。这个证明了两个脱模状态的一致性。

Moldex3D模流分析之成功验证异型水路提升冷却效能的图8传统水路凹痕位移值 0-0.148mm                                   异型水路凹痕位移值 0-0.105mm

整体而言,传统的水路冷却效果遭到局限,由于冷却水路无法触及产品表面因此很难做进一步改善。在这个案例中,我们可以发现异型水路设计可以有效降低冷却时间并提升冷却效率,同时确保产品质量。

moldex3d塑胶模流分析CAE工艺成型及仿真模具

Moldex3D模流分析之成功验证异型水路提升冷却效能的评论0条

    暂无评论

    Moldex3D模流分析之成功验证异型水路提升冷却效能的相关视频课程

    Moldex3D模流分析之成功验证异型水路提升冷却效能的相关案例教程

    人工髋关节一般由三个组件组成:金属柄、股骨头假体和髋臼假体。通常人工髋关节产品的生命周期约二十到三十年,而材料特性和耐用性成为决定产品寿命长短的关键因素。因此,Moldex3D和SimpaTec从既有及新推出的产品中找寻合适的方针,并提出发挥MCM和PIM两个模块综效之创新解决方案。 Moldex3D MCM是针对日益增加的多材质射出成型需求而设计的模块,包含嵌件成型、包覆成型及多射依序成型。MC
    单机平行SMP (Shared Memory Parallelism),另一为跨平台平行 DMP (Distributed Memory Parallelism),即所谓的计算机丛集平行,只要取得平行授权,即可在 Moldex3D 执行这二种并行计算模式。以下说明 Moldex3D 并行计算功能组件的安装信息。 SMP SMP主要组件为Intel MPI。Intel MPI (2019) 会随着使
    Moldex3D已经与我们的项目管理系统完成整合,因此仿真分析不再仅是例行性的作业,它确实可以实际运用在解决潜在产品问题。我们会利用实际生产参数和结果,进行完整的充填、保压、冷却和翘曲分析,并应用在新品上市前的关键开发和制造阶段。 以下证言是由Shape 全球塑料技术经理–Tyler Forbes先生提供,分享Shape团队使用Moldex3D的经验。 选择Moldex3D的原因 在比较过市面上的
    Moldex3D Studio-1 Moldex3D Studio 让使用者可以在单一平台内完成模型准备、网格建构、模拟设置、分析运行、后处理及观看结果,执行Moldex3D Studio后,可以看到如下的窗口,功能区位于显示窗口上方并呈现目前步骤可使用的功能,随着建立新组别会显示更多的页签,根据ribbon上从左至右的页签,精灵以及工具会引导使用者完成一般射程成型仿真或是更高阶的模块。 1. 主
    大纲 本案例的灯具产品由两个组件构成,原料相同且生产自同一个模具。然而由于两个组件的尺寸差异,产生流动不平衡情形。此外透过Moldex3D,也侦测出锁模力吨数有瞬间暴增的现象,因此LMT利用Moldex3D模流分析软件,进行流道、浇口和冷却系统的优化,成功改善流动不平衡和锁模力暴增问题,同时也缩短了冷却时间、改善冷却效率和产品平整度问题,进而节省可观的时间和成本。 挑战 必须让两个组件同时完成充填
    影响力
    粉丝
    内容
    获赞
    收藏
      项目客服
      培训客服
      0 0