【CFD专栏】LBM+GPU=? 风扇气动噪声仿真分享


01


前言


风扇/风机作为一种通用的流体机械,其广泛应用于家电、军工、车辆等领域。


风扇在运转中,旋转的叶片与周围的流场以及静止部件(蜗壳、格栅等)都存在相对运动,其流场表现出明显的非定常特性。这种非定常特性不但影响风扇的气动性能,也会产生明显的气动/流致噪声。


随着近些年来国内经济的飞速发展,人们对居住、办公、驾乘等环境的舒适度要求越来越高。风扇的气动/流致噪声,在家用空调的内外挂机、空气净化器、吸尘器、吸油烟机、汽车空调等的噪声中均占据了主要的组成部分。


各相关企业的研发人员,对于研究、预测、降低风扇的气动/流致噪声可谓伤透了脑筋。某国外家电大牌的吸尘器等产品动辄大几千元,其主打的产品特点就是“静音”。


对于风扇气动/流致噪声的预测,或者说在工业领域应用气动/流致噪声的仿真分析,一直都存在痛点/难点。


行业痛点

在传统的基于NS方程的有限元或有限体积法的CFD软件中,由于数值格式精度上的限制,对于在流场中同时精确求解声学物理量是非常困难的。


而采用不可压缩CFD+有限元声学软件的混合CAA方法,又面临着计算量庞大,并行效率低,学习成本高的问题。


【CFD专栏】LBM+GPU=? 风扇气动噪声仿真分享的图1

那么如何解决这个问题呢?


02


LBM + GPU = ?


Why LBM?

格子-玻尔兹曼方法(LBM)从微观动力学角度出发,将连续介质看作大量位于格子节点上的离散流体质点粒子。粒子按碰撞和迁移规则在格子上运动,通过对各格子流体质点运动特征的统计,获得流体宏观运动规律,即把宏观物理量视作微观统计平均的结果。


LBM方法本质上只求解非定常流动,并且数值耗散低,相对于传统的基于N-S方程的有限元或有限体积法要处理复杂的非线性方程,LBM方法在每个格子上求解线性方程,非常适合于大规模的并行加速计算。因此,LBM方法非常适合应用在风扇的气动噪声预测中。

【CFD专栏】LBM+GPU=? 风扇气动噪声仿真分享的图2


Why GPU? 

GPU(Graphic Processing Unit)作为图形处理器/图形显卡被大家所熟知,随着计算机技术的不断发展,GPU已经被广泛应用在机器学习、人工智能、科学计算等领域。


与适用于复杂逻辑计算的CPU不同,GPU擅长的是大规模的并发计算,NVIDIA公司近些年来研发的计算显卡的算力更是将GPU这种优势推上了登峰造极,如下所示一块Tesla V100 GPU就拥有5120 cuda核。


将LBM方法与GPU高性能并行加速计算结合,将计算消耗的时间由原来的数周缩短为几十个小时,使得风扇的气动噪声仿真不再是一个难题。


【CFD专栏】LBM+GPU=? 风扇气动噪声仿真分享的图3

图片来源:

https://www.nvidia.com/en-us/data-center/v100/


LBM+GPU=Altair ultraFluidX™

Altair ultraFluidX是基于LBM方法的CFD求解器,支持原生的GPU并行加速计算。对于风扇气动/流致噪声的计算在各个环节有诸多优势,简便易使用:


01

前处理


前处理简便,仅需要在前处理软件中完成基本设置,体网格自动化生成,无需大量的几何清理与简化的工作;


02

风扇的运动


使用重叠网格(overset mesh)技术,可以计算中考虑风扇的真实旋转,保证风扇非定常流场的计算精度;


【CFD专栏】LBM+GPU=? 风扇气动噪声仿真分享的图4


03

求解计算


得益于LBM方法低数值耗散的特性,在求解风扇非定常流场的同时,也包含声学物理量,在同一求解器中完成流场+声场的仿真计算;基于原生的GPU并行加速算法,即使是上亿的格子计算模型也不在话下;


04

后处理


支持定制化的后处理流程,输出远场监测点的噪声频谱曲线、声压级、声传播云图等。


【CFD专栏】LBM+GPU=? 风扇气动噪声仿真分享的图5

轴流风扇瞬态流场


【CFD专栏】LBM+GPU=? 风扇气动噪声仿真分享的图6

远场监测点处的SPL曲线


【CFD专栏】LBM+GPU=? 风扇气动噪声仿真分享的图7

发动机冷却风扇声传播动画

(分析模型:机舱+风扇,保留所有机舱内部件)


如果您对本篇技术专题感兴趣,可点击下方按钮或识别二维码,下载相关主题网络研讨会学习资料,或将您的疑问反馈于我们,Altair与您共同探讨~

点击下载学习资料

【CFD专栏】LBM+GPU=? 风扇气动噪声仿真分享的图8


气动噪声流体仿真Altair ultraFluidXCFD研学季

【CFD专栏】LBM+GPU=? 风扇气动噪声仿真分享的评论0条

    暂无评论

    【CFD专栏】LBM+GPU=? 风扇气动噪声仿真分享的相关案例教程

    风扇的气动噪声 在工业设备行业,最大噪音值受法规限制。在很多使用风扇冷却的设备上,风扇噪声通常是这些设备工作噪声的最大贡献量。而在家电民用行业,例如空调、空气净化器、油烟机等,其噪音大小直接关系到用户的体验感受,而这些设备中风扇噪声都有很大的贡献量。 噪音测试目前是一种比较成熟、且高效的获取风扇噪声的方法。但是通过噪声测试我们能获取的只有当前设备的噪声水平、以及频谱中的阶次特征,它并不能告诉我们噪
    随着技术的发展,新能源汽车、5G通信、和人工智能(AI)等大趋势正在重新定义工程的界限。作为全球领先的科技公司,Altair一直致力于提高仿真的功能、质量并缩短仿真所需时间。 Altair宣布CFD仿真软件Altair AcuSolve™和三维渲染和动画工具Thea Render,现提供对NVIDIA GPU的增强支持,速度比使用同等配置的CPU快4倍! 除了提供GPU支持外,Altair还支持基
    优秀的计算性能和尖端的数值方法的组合,在更短的时间内研究复杂的流体问题,将成为未来CFD领域高效而主流的方式。 01、流体仿真发展趋势与计算需求 计算流体仿真力学,英文全称Computational Fluid Dynamics,缩写为CFD,兴起于近50年来,是一门相对年轻的学科。它是数值数学和计算机科学结合的产物,通过空间离散和数值求解的思路,对流体力学的各类问题进行数值实验、模拟和分析研究,
    优秀的计算性能和尖端的数值方法的组合,在更短的时间内研究复杂的流体问题,将成为未来CFD领域高效而主流的方式。 1、流体仿真发展趋势与计算需求 计算流体仿真力学,英文全称Computational Fluid Dynamics,缩写为CFD,兴起于近50年来,是一门相对年轻的学科。它是数值数学和计算机科学结合的产物,通过空间离散和数值求解的思路,对流体力学的各类问题进行数值实验、模拟和分析研究,以
    最近收到了很多提问,shonDy所采用的粒子法与LBM方法有什么区别?粒子法的优势在哪里?等等。为了弄清楚这些问题,本篇随笔从CFDer常见的几种算法讲起。 上图是我重点围绕粒子法对常用CFD方法的一个简单分类,并非以偏概全。如果详细地整理CFD算法,可以有上百种之多。为了有的放矢,上图作为一个不完全分类展示给大家。 1.有限体积法 这是目前CFD领域最成熟的算法。该算法是将流体的Euler控制方
    市场部
    影响力
    粉丝
    内容
    获赞
    收藏
      0 1
      项目客服
      培训客服
      平台客服
      顶部