opensees模拟滞回

wipeputs "System"model basic -ndm 2 -ndf 3puts "restraint"node 1 0 0 node 2 0 700node 3 0 1400node 4 0 700node 5 475 700node 6 1250 700node 7 1500 700node 8 1650 700puts "rigidDiaphragm"puts "mass"#mass 1 3.361E-002 3.361E-002 0.000E+000 0.000E+000 0.000E+000 0.000E+000#mass 2 8.130E-002 8.130E-002 0.000E+000 0.000E+000 0.000E+000 0.000E+000#mass 3 3.361E-002 3.361E-002 0.000E+000 0.000E+000 0.000E+000 0.000E+000#mass 4 4.314E-002 4.314E-002 0.000E+000 0.000E+000 0.000E+000 0.000E+000#mass 5 3.845E-002 3.845E-002 0.000E+000 0.000E+000 0.000E+000 0.000E+000#mass 6 9.379E-003 9.379E-003 0.000E+000 0.000E+000 0.000E+000 0.000E+000puts "node"fix 1 1 1 0;fix 3 1 0 0;fix 8 1 0 0;puts "Equal DOF" equalDOF 2 4 1 2puts "material"#钢筋本构uniaxialMaterial Steel02 1 582 289850 0.01 15 0.925 0.15 0.04 1 0.04 1 0 #uniaxialMaterial Steel01 1 582 289850 0.01#柱核心混凝土本构 #01本构 #uniaxialMaterial Concrete01 2 -57.22 -0.0052 -28.61 -0.0445 #(mander本构模型) #uniaxialMaterial Concrete02 2 -57.22 -0.0052 -28.61 -0.0445 0.1 4.08 1000 uniaxialMaterial Concrete07 2 -57.22 -0.0052 32939 4.08 0.00025 2 8.58 1.5 #(modifed kent-park本构模型) #uniaxialMaterial Concrete02 2 -53.38 -0.0025 -10.68 -0.0502 0.1 4.08 1000#柱保护层混凝土本构 #01本构 uniaxialMaterial Concrete01 3 -43.4 -0.002 -8.47 -0.008 # mander本构模型) #uniaxialMaterial Concrete02 3 -43.4 -0.002 -8.47 -0.008 0.1 4.08 1000 #uniaxialMaterial Concrete07 3 -43.4 -0.002 32939 4.08 0.00025 2 2.3 2.93 #(过镇海本构模型) #uniaxialMaterial Concrete02 3 -43.4 -0.0027 -8.47 -0.008 0.1 4.08 1000#梁加密区(1)核心混凝土本构 #01本构 #uniaxialMaterial Concrete01 4 -47.13 -0.0029 -23.56 -0.011 #(mander本构模型) #uniaxialMaterial Concrete02 4 -47.13 -0.0029 -23.56 -0.011 0.1 4.08 1000 uniaxialMaterial Concrete07 4 -47.13 -0.0029 32939 4.08 0.00025 2 3.85 2 #(modifed kent-park本构模型) #uniaxialMaterial Concrete02 4 -45.36 -0.0021 -9.07 -0.0155 0.1 4.08 1000#梁加密区(1)保护层混凝土本构 #01本构 uniaxialMaterial Concrete01 5 -43.4 -0.002 -8.47 -0.008 #(mander本构模型) #uniaxialMaterial Concrete02 5 -43.4 -0.002 -8.47 -0.008 0.1 4.08 1000 #uniaxialMaterial Concrete07 5 -43.4 -0.002 32939 4.08 0.00025 2 2.3 2.93 #(过镇海本构模型) #uniaxialMaterial Concrete02 5 -43.4 -0.0027 -8.47 -0.008 0.1 4.08 1000#梁非加密区核心混凝土本构 #01本构 #uniaxialMaterial Concrete01 6 -43.95 -0.0021 -21.98 -0.0055 #(mander本构模型) #uniaxialMaterial Concrete02 6 -43.95 -0.0021 -21.98 -0.0055 0.1 4.08 1000 uniaxialMaterial Concrete07 6 -43.95 -0.0021 32939 4.08 0.00025 2 2.59 2.68 #(modifed kent-park本构模型) #uniaxialMaterial Concrete02 6 -45.24 -0.0021 -9.05 -0.0082 0.1 4.08 1000#梁非加密区保护层混凝土本构 #01本构 uniaxialMaterial Concrete01 7 -43.4 -0.002 -8.47 -0.008 #(mander本构模型) #uniaxialMaterial Concrete02 7 -43.4 -0.002 -8.47 -0.008 0.1 4.08 1000 #uniaxialMaterial Concrete07 7 -43.4 -0.002 32939 4.08 0.00025 2 2.3 2.93 #(过镇海本构模型) #uniaxialMaterial Concrete02 7 -43.4 -0.0027 -8.47 -0.008 0.1 4.08 1000 #梁加密区(2)核心混凝土本构 #01本构 #uniaxialMaterial Concrete01 8 -47.13 -0.0029 -23.56 -0.011 #(mander本构模型) #uniaxialMaterial Concrete02 8 -47.13 -0.0029 -23.56 -0.011 0.1 4.08 1000 uniaxialMaterial Concrete07 8 -47.13 -0.0029 32939 4.08 0.00025 2 3.85 2 #(modifed kent-park本构模型) #uniaxialMaterial Concrete02 8 -45.36 -0.0021 -9.07 -0.0155 0.1 4.08 1000#梁加密区(2)保护层混凝土本构 #01本构 uniaxialMaterial Concrete01 9 -43.4 -0.002 -8.47 -0.008 #(mander本构模型) #uniaxialMaterial Concrete02 9 -43.4 -0.002 -8.47 -0.008 0.1 4.08 1000 #uniaxialMaterial Concrete07 9 -43.4 -0.002 32939 4.08 0.00025 2 2.3 2.93 #(过镇海本构模型) #uniaxialMaterial Concrete02 9 -43.4 -0.0027 -8.47 -0.008 0.1 4.08 1000 #板核心混凝土本构 #01本构 #uniaxialMaterial Concrete01 10 -43.95 -0.0021 -21.98 -0.0055 #(mander本构模型) #uniaxialMaterial Concrete02 10 -43.95 -0.0021 -21.98 -0.0055 0.1 4.08 1000 uniaxialMaterial Concrete07 10 -43.95 -0.0021 32939 4.08 0.00025 2 2.59 2.68 #(modifed kent-park本构模型) #uniaxialMaterial Concrete02 10 -45.24 -0.0021 -9.05 -0.0082 0.1 4.08 1000#板保护层混凝土本构 #01本构 uniaxialMaterial Concrete01 11 -43.4 -0.002 -8.47 -0.008 #(mander本构模型) #uniaxialMaterial Concrete02 11 -43.4 -0.002 -8.47 -0.008 0.1 4.08 1000 #uniaxialMaterial Concrete07 11 -43.4 -0.002 32939 4.08 0.00025 2 2.3 2.93 #(过镇海本构模型) #uniaxialMaterial Concrete02 11 -43.4 -0.0027 -8.47 -0.008 0.1 4.08 1000 #零长度单元 #(钢筋滑移本构) uniaxialMaterial Bond_SP01 100 582 0.34027 878.2 11.9094 0.25 0.25 #uniaxialMaterial BarSlip 100 30 582 289850 855 2898.5 200 8 4 125 250 weak beambot #核心混凝土本构 #01本构 #uniaxialMaterial Concrete01 200 -47.13 -0.0029 -23.56 -0.011 #(mander本构模型) #uniaxialMaterial Concrete02 200 -47.13 -0.0029 -23.56 -0.011 0.1 4.08 1000 uniaxialMaterial Concrete07 200 -47.13 -0.0029 32939 4.08 0.00025 2 3.85 2 #(modifed kent-park本构模型) #uniaxialMaterial Concrete02 200 -45.36 -0.0021 -9.07 -0.0155 0.1 4.08 1000 #保护层混凝土本构 #01本构 uniaxialMaterial Concrete01 300 -43.4 -0.002 -8.47 -0.008 #(mander本构模型) #uniaxialMaterial Concrete02 300 -43.4 -0.002 -8.47 -0.008 0.1 4.08 1000 #uniaxialMaterial Concrete07 300 -43.4 -0.002 32939 4.08 0.00025 2 2.3 2.93 #(过镇海本构模型) #uniaxialMaterial Concrete02 300 -43.4 -0.0027 -8.47 -0.008 0.1 4.08 1000#柱截面抗剪抗扭uniaxialMaterial Elastic 201 3.447E+008uniaxialMaterial Elastic 301 3.447E+008uniaxialMaterial Elastic 401 2.330E+012#梁截面抗剪抗扭uniaxialMaterial Elastic 202 3.228E+008uniaxialMaterial Elastic 302 1.67856E+008uniaxialMaterial Elastic 402 1.03635E+012#柱子纤维模型NC200X200section Fiber 1 {#核心混凝土patch rect 2 5 5 -75 -75 75 75#cover concrete fiberspatch rect 3 5 1 -75 75 75 100patch rect 3 1 7 75 -100 100 100patch rect 3 5 1 -75 -100 75 -75patch rect 3 1 7 -100 -100 -75 100#reinforcing fiberslayer straight 1 3 50.27 -75 75 75 75 layer straight 1 2 50.27 -75 0 75 0layer straight 1 3 50.27 -75 -75 75 -75}#梁加密区(1)纤维模型section Fiber 2 {#核心混凝土patch rect 4 3 8 -37.5 -100 37.5 100#cover concrete fiberspatch rect 5 3 1 -37.5 100 37.5 125patch rect 5 1 10 37.5 -125 62.5 125patch rect 5 3 1 -37.5 -125 37.5 -100patch rect 5 1 10 -62.5 -125 -37.5 125#板核心区混凝土patch rect 10 10 1 62.5 85 422.5 105patch rect 10 10 1 -422.5 85 -62.5 105 #板保护层区混凝土patch rect 11 10 1 62.5 65 422.5 85patch rect 11 10 1 62.5 105 422.5 125patch rect 11 10 1 -422.5 65 -62.5 85patch rect 11 10 1 -422.5 105 -62.5 125#reinforcing fiberslayer straight 1 4 50.27 -37.5 -100 37.5 -100layer straight 1 4 78.54 -37.5 100 37.5 100layer straight 1 4 12.57 -422.5 85 -62.5 85layer straight 1 4 12.57 -422.5 105 -62.5 105layer straight 1 4 12.57 62.5 85 422.5 85layer straight 1 4 12.57 62.5 105 422.5 105}#梁非加密区纤维模型section Fiber 3 {#核心混凝土patch rect 6 3 8 -37.5 -100 37.5 100#cover concrete fiberspatch rect 7 3 1 -37.5 100 37.5 125patch rect 7 1 10 37.5 -125 62.5 125patch rect 7 3 1 -37.5 -125 37.5 -100patch rect 7 1 10 -62.5 -125 -37.5 125#板核心区混凝土patch rect 10 10 1 62.5 85 422.5 105patch rect 10 10 1 -422.5 85 -62.5 105 #板保护层区混凝土patch rect 11 10 1 62.5 65 422.5 85patch rect 11 10 1 62.5 105 422.5 125patch rect 11 10 1 -422.5 65 -62.5 85patch rect 11 10 1 -422.5 105 -62.5 125#reinforcing fiberslayer straight 1 4 50.27 -37.5 -100 37.5 -100layer straight 1 2 78.54 -37.5 100 37.5 100layer straight 1 4 12.57 -422.5 85 -62.5 85layer straight 1 4 12.57 -422.5 105 -62.5 105layer straight 1 4 12.57 62.5 85 422.5 85layer straight 1 4 12.57 62.5 105 422.5 105}#梁加密区(2)纤维模型section Fiber 4 {#核心混凝土patch rect 8 3 8 -37.5 -100 37.5 100#cover concrete fiberspatch rect 9 3 1 -37.5 100 37.5 125patch rect 9 1 10 37.5 -125 62.5 125patch rect 9 3 1 -37.5 -125 37.5 -100patch rect 9 1 10 -62.5 -125 -37.5 125#板核心区混凝土patch rect 10 10 1 62.5 85 422.5 105patch rect 10 10 1 -422.5 85 -62.5 105 #板保护层区混凝土patch rect 11 10 1 62.5 65 422.5 85patch rect 11 10 1 62.5 105 422.5 125patch rect 11 10 1 -422.5 65 -62.5 85patch rect 11 10 1 -422.5 105 -62.5 125#reinforcing fiberslayer straight 1 4 50.27 -37.5 -100 37.5 -100layer straight 1 2 78.54 -37.5 100 37.5 100layer straight 1 4 12.57 -422.5 85 -62.5 85layer straight 1 4 12.57 -422.5 105 -62.5 105layer straight 1 4 12.57 62.5 85 422.5 85layer straight 1 4 12.57 62.5 105 422.5 105}#零长度单元纤维模型section Fiber 5 {#核心混凝土patch rect 200 3 8 -37.5 -100 37.5 100#cover concrete fiberspatch rect 300 3 1 -37.5 100 37.5 125patch rect 300 1 10 37.5 -125 62.5 125patch rect 300 3 1 -37.5 -125 37.5 -100patch rect 300 1 10 -62.5 -125 -37.5 125#reinforcing fiberslayer straight 100 4 50.27 -37.5 -100 37.5 -100layer straight 100 4 78.54 -37.5 100 37.5 100}#柱子section Aggregator 1001 201 Vy 301 Vz 401 T -section 1#加密区(1)section Aggregator 1002 202 Vy 302 Vz 402 T -section 2#非加密区section Aggregator 1003 202 Vy 302 Vz 402 T -section 3#加密区(2)section Aggregator 1004 202 Vy 302 Vz 402 T -section 4#零长度section Aggregator 1005 202 Vy 302 Vz 402 T -section 5puts "section"puts "transformation"geomTransf PDelta 1 #geomTransf Linear 1 geomTransf Linear 2 puts "element"set np 4#element dispBeamColumn 1 1 2 $np 1001 1#element dispBeamColumn 2 2 3 $np 1001 1#element dispBeamColumn 3 4 5 $np 1002 2#element dispBeamColumn 4 5 6 $np 1003 2#element dispBeamColumn 5 6 7 $np 1004 2#element dispBeamColumn 6 7 8 $np 1004 2element nonlinearBeamColumn 1 1 2 $np 1001 1element nonlinearBeamColumn 2 2 3 $np 1001 1element nonlinearBeamColumn 3 4 5 $np 1002 2element nonlinearBeamColumn 4 5 6 $np 1003 2element nonlinearBeamColumn 5 6 7 $np 1004 2element nonlinearBeamColumn 6 7 8 $np 1004 2element zeroLengthSection 7 2 4 1005puts "recorder"recorder Node -file node7.out -time -node 7 -dof 2 dispputs "gravity"## Load Case = DEADset p -1.66E+005#set p 0pattern Plain 1 Linear {load 3 0.000E+000 $p 0.000E+000}puts "analysis"constraints Plainnumberer Plainsystem BandGeneraltest NormDispIncr 1.0e-1 200algorithm Newtonintegrator LoadControl 1.000E-001analysis Staticanalyze 10loadConst -time 0.0puts " pushover"## Load Case = PUSHpattern Plain 2 Linear {load 7 0.000E+000 1.000E+005 0.000E+000 }puts "analysis"constraints Plain numberer RCMsystem UmfPacktest NormDispIncr 1.0e-1 200algorithm Newtonanalysis Staticintegrator DisplacementControl 7 2 -0.002analyze 1000integrator DisplacementControl 7 2 0.006analyze 1000integrator DisplacementControl 7 2 -0.012analyze 1000integrator DisplacementControl 7 2 0.018analyze 1000integrator DisplacementControl 7 2 -0.022analyze 1000integrator DisplacementControl 7 2 0.028analyze 1000integrator DisplacementControl 7 2 -0.036analyze 1000integrator DisplacementControl 7 2 0.040analyze 1000integrator DisplacementControl 7 2 -0.040analyze 1000integrator DisplacementControl 7 2 0.040analyze 1000integrator DisplacementControl 7 2 -0.050analyze 1000integrator DisplacementControl 7 2 0.060analyze 1000integrator DisplacementControl 7 2 -0.060analyze 1000integrator DisplacementControl 7 2 0.060analyze 1000integrator DisplacementControl 7 2 -0.080analyze 1000integrator DisplacementControl 7 2 0.100analyze 1000integrator DisplacementControl 7 2 -0.100analyze 1000integrator DisplacementControl 7 2 0.100analyze 1000integrator DisplacementControl 7 2 -0.105analyze 1000integrator DisplacementControl 7 2 0.110analyze 1000integrator DisplacementControl 7 2 -0.110analyze 1000integrator DisplacementControl 7 2 0.110analyze 1000integrator DisplacementControl 7 2 -0.121analyze 1000integrator DisplacementControl 7 2 0.132analyze 1000integrator DisplacementControl 7 2 -0.132analyze 1000integrator DisplacementControl 7 2 0.132analyze 1000integrator DisplacementControl 7 2 -0.143analyze 1000integrator DisplacementControl 7 2 0.143analyze 1000integrator DisplacementControl 7 2 -0.143analyze 1000integrator DisplacementControl 7 2 0.143analyze 1000integrator DisplacementControl 7 2 -0.167analyze 1000integrator DisplacementControl 7 2 0.180analyze 1000integrator DisplacementControl 7 2 -0.180analyze 1000integrator DisplacementControl 7 2 0.180analyze 1000integrator DisplacementControl 7 2 -0.190analyze 1000integrator DisplacementControl 7 2 0.210analyze 1000integrator DisplacementControl 7 2 -0.220analyze 1000integrator DisplacementControl 7 2 0.220analyze 1000integrator DisplacementControl 7 2 -0.220analyze 1000integrator DisplacementControl 7 2 0.220analyze 1000integrator DisplacementControl 7 2 -0.220analyze 1000integrator DisplacementControl 7 2 0.230analyze 1000
滞回曲线

opensees模拟滞回的评论3条

  • 浅白
    0
    可以分享一下完整代码吗
  • 哈利路亚
    0
    1732518049@qq.com,谢谢大神发一下这个帖子的代码

opensees模拟滞回的相关案例教程

OpenSees墩柱拟静力加载试验数值模拟 0引言 纤维模型在用于结构弹塑性分析时,能以较低的计算成本获得较高的求解精度,且各纤维可以采用材料单轴本构关系,从而避免了确定多维本构关系的困难。墩柱拟静力加载试验是结构抗震经常会做的试验,本文以太平洋地震研究中心(PEER)上边一方形柱试件拟静力加载试验为例(如图1),介绍如何在OpenSees中建立墩柱纤维模型并进行PushOver分析,并附上详细命
00.介绍软件下载安装及学习资料。 01.讲解OpenSees单位、节点、截面、单元、质量、约束、重力、局部坐标系与整体坐标系间坐标转换规则、输出计算结果等内容。 02.讲解OpenSees分析命令包括constraint、algorithm、Integrator等内容。 03.加荷载、地震动、模态分析、瑞利阻尼命令,包括TimeSeries、pattern、eigen、rayleigh等及案例演
1,项目概述 在军工防护中,成层式蜂窝组合结构具有较好的抗侵彻性能,模型包括底部正交的薄板(内部填充土壤),顶部为蜂窝板,蜂窝内填充混凝土材料。通过仿真分析,获取成层式蜂窝组合结构的坑弹侵彻性能,以及观察弹体的侵彻路径。 2,几何模型建立及处理 首先在WORKBENCH中建立几何模型,模型包括:1子*弹,2混凝土,3蜂窝钢板,4上板,5承载板,6下板,7土壤。其中蜂窝及承载板及上下板模型如下: 3
SUBWAY-CAL.doc KISSsoft - Release 10-2008F KISSsoft evaluation评估 Important hint重要提示: At least one warning has occurred during the calculation计算过程中至少已出现一次警告: 1-> Notice通知: Gear 齿轮2 : Measuring the Base
一、描述 爆炸引爆在工程上应用非常广,如冲击引爆、爆炸引爆、燃气燃烧引爆等。本文采用LSDYNA软件针对乳化炸药爆炸引爆B炸药进行研究,模型包括最内部的乳化炸药,最外侧的空气域,以及中间的B炸药。 二、几何模型 几何模型包括空气、B炸药、引爆乳化炸药。首先利用workbench的dm模块建立空气、B炸药、引爆乳化炸药的几何模型,注意的是三个模型要放入一个part下,以保证他们之间可以形成共节点的有
硕士
影响力
粉丝
内容
获赞
收藏
    项目客服
    培训客服
    3 9