考虑流-固耦合理论的煤层瓦斯抽采comsol数值模拟

本模型来源论文复现,附件中包含参考论文和模型,欢迎大家下载学习。

煤岩作为一种多孔介质,具有复杂的宏观裂隙、显微裂隙和孔隙组成。在高 压水射流扰动后,打破原始储层的原有应力平衡状态,使多孔介质所受有效应力 发生改变,煤岩的孔隙度和渗透率也随时间推移而不断发生改变,煤层中原有瓦 斯运移状态被打破。煤储层中瓦斯的吸附、解吸过程也会引起煤的膨胀变形和基 质收缩。因此,研究水射流扰动煤层后的瓦斯运移产出过程,必须要综合考虑应 力场、变形场和瓦斯渗流场三场互相耦合作用。

基本假设 瓦斯在煤储层中的运移产出是一个涉及多学科的及其复杂过程,包括渗流力 学、固体力学、材料力学、岩体力学等,需要引入必要的假设作为建立流-固耦合 偏微分方程的基础。本文根据前人对流-固耦合理论的不断研究,为建立含瓦斯煤 岩流-固耦合理论模型提出如下假设条件: 

(1)含瓦斯煤岩可视为各向同性线弹性介质;

(2)将煤层视为均质,即煤层中各部分物理性质处处相同,并不随着位置的变 化而变化;

(3)煤层温度保持恒定;

(4)煤层中所含瓦斯视为理想气体,且服从理想气体状态方程;煤层瓦斯解吸 服从 Langmuir 方程;

(5)煤岩的变形属于小变形,含瓦斯煤岩变形所产生的应变与有效应力之间的 关系遵从广义胡克定律;

(6)煤层中只有单相饱和的瓦斯饱流体,并且只有游离和吸附两种状态; 

(7)设模型与外界隔绝,不发生任何形式的能量和物质交换。

求解结果

结果.png
结果二.png
孔隙率变化1.png
孔隙率变化2.png

孔隙率数学模型

孔隙率.png

渗透率演化数学模型

渗透率.png

应力场方程

应力场.png

渗流场方程

渗流场.png

含瓦斯煤岩流-固耦合理论模型方程组

流固耦合方程组.png

数学模型嵌入

孔隙率输入comsol.png

渗透率输入comosl.png

应力场嵌入

以下内容为付费内容,请购买后观看
该付费内容为:
包含 1张图片 1个附件
售价: 0人购买