ANSYS Workbench锅炉给水管热应力分析

1问题描述

某蒸发量为6t/h、额定压力为1.27MPa的蒸汽锅炉,给水管连接在后管板上。给水管的规格为φ76mmX4mm,管板厚度16mm,给水管与管板的焊脚尺寸为4mm,计算中给水管外伸长度为300mm,伸入锅炉内部100mm,结构简图如图1所示;材料参数见表1。现分析连续给水和20min间断给水条件下的给水管的稳态温度场、瞬态温度场及相应的热应力。

ANSYS Workbench锅炉给水管热应力分析的图1

图1 给水管简图

表1 不同温度下的材料参数

ANSYS Workbench锅炉给水管热应力分析的图2


给水温度为50℃,锅内饱和水温度为190.7℃。连续给水时水流速度为0.459m/s,20min间断供水时水流速度为1.377m/s。假设间断供水开始时给水管内水温度与锅内饱和水温度相等。

按照《锅炉计算手册》(宋贵良主编),可计算出连续给水时管内的传热膜系数为2289.5 W/(m²·℃),20min间断供水时管内热水传热膜系数为8947.1 W/(m²·℃),20min间断供水时管内冷水传热膜系数为5513.6 W/(m²·℃)。

给水管浸入饱和水表面(外侧)的传热为自然对流。假设管子外壁温度与饱和水温差为20℃(简化计算),可计算出管外传热膜系数为1792.4 W/(m²·℃)。同样可以计算出管板内侧表面的传热膜系数为1094 W/(m²·℃)。

管板外表面及给水外伸部分的外侧表面为绝热。

2 稳态热应力分析

采用2D轴对称模型分析,在Workbench的Engineering Data按表1输入不同温度下的材料参数。由于给水管与管板连接位置温度梯度和热应力可能较大,因此该区域局部网格加密。

ANSYS Workbench锅炉给水管热应力分析的图3

图2 模型网格

模型网格总共6652个节点,1957个单元,偏度最大值为0.66,平均偏度为0.05。设置计算得到的三个对流边界条件,如图3所示。

ANSYS Workbench锅炉给水管热应力分析的图4

图3 边界条件

计算得到结构的稳态温度场如图4所示。从图5的应力强度云图可知,热应力最大值为285.36MPa,出现在给水管内壁。该位置材料温度为100℃左右,屈服应力(材料为20钢)为220MPa,可见材料已经发生屈服。

ANSYS Workbench锅炉给水管热应力分析的图5

图4 稳态温度场

ANSYS Workbench锅炉给水管热应力分析的图6

图5 稳态热应力场(应力强度)

3瞬态热应力分析

20min间断供水开始时,金属温度为饱和水的温度,即190.7℃。在进行瞬态温度场分析时,认为50℃冷水按照1.377m/s的速度均均向前推进,通过给水管的时间为0.302s。为了计算最后达到稳定传热是的温度场,计算最终时间为300s。分析中共采用了18个载荷步,如表2所示。

表2 热分析载荷步

ANSYS Workbench锅炉给水管热应力分析的图7

Workbench的瞬态热分析中默认设置的初始温度是整个结构均匀一致,如果初始温度不一致,可先进行一次稳态热分析,然后把稳态热分析的温度场结果作为瞬态热分析的初始温度。在本例中,结构的初始温度均匀一致,为190.7℃。

ANSYS Workbench锅炉给水管热应力分析的图8

图6 瞬态温度场(1s)

ANSYS Workbench锅炉给水管热应力分析的图9

图7 瞬态温度场(10s)

ANSYS Workbench锅炉给水管热应力分析的图10

图8 瞬态温度场(40s)

图6到图8给出了不同时间下的瞬态温度场云图,取管子内表面为路径,可以得到不同时刻的温度分布情况,如图9所示。图中横坐标为到零时刻冷热水交界面的距离。可以看出,0.2s、0.5s、1s时的温度曲线呈现明显的台阶状(这是由于热分析边界条件采用与时间步对应的阶越方式,如果时间步足够小,台阶将消失)。同时,2s、5s、10s、40s的温度曲线在与管板连接区域有明显的“凸台”,这是因为管板将热量源源不断地传送到水管上。在40s时,温度逐渐趋于稳定。

ANSYS Workbench锅炉给水管热应力分析的图11

图10 给水管内壁温度分布曲线ANSYS Workbench锅炉给水管热应力分析的图12

图11 给水管内壁应力强度分布曲线

图10给出了1s、2s、5s、10s、40s时给水管内壁的应力强度曲线。与图9的情况类似,最终的应力峰值出现在与管板交界的区域。图11为300s时的应力强度云图,屈服区域明显变大,最大应力强度增加至332.34MPa,比连续给水时高出16%。

ANSYS Workbench锅炉给水管热应力分析的图13

图12 300s时瞬态应力场(应力强度)

算例源文件见付费内容

以下内容为付费内容,请购买后观看
该付费内容为:
包含 1个附件
售价: 1人购买
锅炉热分析压力容器

ANSYS Workbench锅炉给水管热应力分析的评论0条

    暂无评论

    ANSYS Workbench锅炉给水管热应力分析的相关案例教程

    摘 要:在液压阀块设计过程中,如何确定液压阀块内部孔道间的壁厚是一个很关键的问题,壁厚过大则液压阀块整体尺寸偏大,材料浪费且不经济,壁厚过小则存在击穿的风险,存在一定的安全隐患。为得出不同材质的液压阀块在极限压力 42 MPa 的条件下的极限壁厚,针对液压阀块内部进行有限元分析,通过 PROE 三维绘图软件进行三维建模,导入有限元分析软件 ANSYS Workbench 中,通过对液压阀块和内部管
    本文件按照GB/T1.1一2020《标准化工作导则第1部分:标准化文件的结构和起草规则》的规定起草。 本文件代替GB16897-2010《制动软管的结构、性能要求及试验方法》,与GB16897—2010相比,除结构调整和编辑性改动外,主要技术变化如下: ——对液压制动软管总成,增加了“快速抗拉强度”“耐动态臭氧性”等的性能要求及试验方法(见表1、5.3.6、5.3.10) , “最大膨胀量”增加了
    过盈配合问题是应力分析中一类常见的问题。在ANSYS Workbench中可以通过多种方法计算过盈配合应力,本文通过一个典型算例,对三种典型计算方法进行分享和讨论,这三种方法依次是:接触界面处理方法、约束方程法、直接接触分析法。 接触界面处理方法 在ANSYS Workbench中,可以利用非线性接触类型的Interface Treatment功能来计算过盈配合应力。下面以一个算例介绍有关的实现方
    点击上方蓝字关注我们 Ansys Workbench工程应用之——结构非线性(下):状态非线性(5)螺纹连接 螺纹连接在工程中被广泛应用,特别是普通三角螺纹,被应用在各种紧固标准件上。本文所说的螺栓包括了螺钉、螺杆等。 1 螺纹的工程应用基础 1.1 螺纹主要参数 以圆柱普通外螺纹为例说明螺纹的主要参数。 (1)大径d——即螺纹的公称尺寸,比如M8的螺钉,d=8mm。 (2)螺距P——螺纹相邻两圈
    文章发布:上海安世亚太官方订阅号(搜索:PeraShanghai) 联系我们:021-58403100 板料冲压是利用冲模在压力机上对材料施加压力,使材料产生分离和变形,从而获得一定形状、尺寸和性能的加工方法。板料冲压通常在室温下进行,故又称冷冲压。当板厚超过8-10mm时,一般需采用热冲压。 由于冲压过程中凸模的运动速度较慢,成型过程属于准静态变形过程,所以本文使用ANSYS Workbench
    硕士/工程师
    影响力
    粉丝
    内容
    获赞
    收藏
      0 1
      项目客服
      培训客服
      平台客服
      顶部