干货:地质灾害区划与评价因子选取及敏感性分析

干货:地质灾害区划与评价因子选取及敏感性分析的图1

影响地质灾害形成的自然因素众多,历史地震地质灾害发生的数量、分布范围、活动规模都直接反映了地层岩性、地形地貌、现存新老滑坡以及有关地震动力环境对地震诱发地质灾害的控制作用;此外,土地利用、地下水、植物条件等因素也对震后地质灾害形成起到一定程度的影响。本文采用统计学方法,对研究区山地灾害点与各因子的每个属性进行相对频率组合的定量计算方法,综合天水市秦州区震后地质灾害发育情况,本次危险性区划分析中选用了10个影响因子,主要包括:地质构造、地形坡度、海拔高程及水系发育情况等。


干货:地质灾害区划与评价因子选取及敏感性分析的图2

地质构造

地质构造因素对地质灾害点的发育控制作用十分明显,在区域地质构造比较复杂,褶皱比较强烈,新构造运动比较活动的地区,地质灾害比较发育。其影响主要表现在:①地质构造决定了地貌形态的分布,对地质灾害发育的临空条件起到间接的控制作用;②地质构造带岩石破碎、风化严重,使得边坡的连续性和完整性受到破坏,是地下水最丰富和活动的地区,降低了岩体的抗剪强度;③在构造应力作用下,岩体内节理、裂隙发育,为崩塌发育提供了条件;④活动断层造成地表破裂,岩层结构发生破坏,非活动断层作为地震波的反射界面,可能导致岩体的拉力破坏;⑥断裂构造控制着水系的发育和人类工程活动的分布,对地质灾害的威胁对象起到间接的控制作用

研究中,通过GIS软件缓冲区分析和数据统计功能,对研究区内灾害点与断裂距离分布关系做了统计:首先,对研究区内的断裂做距离缓冲处理,分别得到0-500,500-1000,1000-2000及大于2000米四个缓冲区;然后利用GIS统计功能,对每个缓冲区内的灾害数量、缓冲区面积进行统计,计算每个缓冲区内灾害点密度。详细数据如表5-1-4所示,灾害点与断裂的分布关系和敏感性关系,如图5-1-1所示。

5-1-4研究区地质灾害点与断裂距离统计关系

断裂缓冲距离(m)

<500

500-1000

1000-2000

>2000

缓冲区面积(km2)

291.83

248.35

528.14

1285.43

面积百分比(%)

12.40

10.55

22.44

54.61

灾害点数量

34

28

42

100

灾害点密度(个/km2)

0.12

0.11

0.08

0.08


干货:地质灾害区划与评价因子选取及敏感性分析的图3

5-1-1 断裂构造与地质灾害分布关系图


干货:地质灾害区划与评价因子选取及敏感性分析的图4

地质灾害频率

对天水市秦州区按1km*1km网格进行离散,形成2534个空间离散网格,依据灾害点在网格上的分布,进行基于GIS的统计。该计算包括单元面积上灾害发生的频率及地质灾害面积模数比。

地质灾害频率比:设第(i,j)单元内灾害频率为f(i,j),单元面积为S(i,j),单元内灾害的频率密度为ρf(i,j),整个研究区面积为S,灾害总数为f,总频率密度为ρf,则:

(i,j)单元格灾害频率比为:  Rf(i,j)=ρf(i,j)/ρf

其中,ρf(i,j)=f(i,j)/S(i,j);ρf=f/S。

地质灾害面积模数比:设第(i,j)单元内灾害体分布面积为Ss(i,j),单元面积为S(i,j),单元内灾害的面积模数为ρs(i,j),整个研究区面积为S,灾害点总面积为s,总面积模数为ρs,则:

(i,j)单元格灾害面积模数为:RS(i,j)=ρs(i,j)/ρs

其中,ρs(i,j)=s(i,j)/S(i,j);ρs=s/S。

经计算可得,单个像元上最大出现地质灾害的频率为8。对空间灾害点的频率分布进行归一,可形成图5-1-2灾害发生频率归一化分布图及5-1-3地质灾害面积模数比归一化图。

干货:地质灾害区划与评价因子选取及敏感性分析的图5

5-1-2地质灾害频率比归一化图

干货:地质灾害区划与评价因子选取及敏感性分析的图6

5-1-3地质灾害面积模数比归一化图


干货:地质灾害区划与评价因子选取及敏感性分析的图7

坡度及坡度变率

利用工作区1:5万DEM数据提取坡度数据。根据前文中的分析,由于工作区内滑坡、崩塌灾害主要分布于10°~60°之间的斜坡,10°以下斜坡基本不发生滑坡、崩塌等灾害,因此本次评价将60°以上斜坡的易发程度定义为1,10°以下易发程度定义为0,将坡度数据进行0~1之间的线性归一化,得到坡度归一化结果图。

坡度变化率是对地形基本因子——坡度变化情况进行量化的指标,由于斜坡拉张应力区的分布与斜坡坡度呈正相关联系,因此随着斜坡坡度变化率增大的斜坡坡脚地带形成的最大剪应力也不断增大,斜坡也就愈容易产生变形破坏。本次通过DEM对全区坡度变化率数据进行提取,然后进行0~1之间归一化处理之后参与评价。

干货:地质灾害区划与评价因子选取及敏感性分析的图8

5-1-4坡度归一化图

干货:地质灾害区划与评价因子选取及敏感性分析的图9

5-1-5坡度变率归一化

干货:地质灾害区划与评价因子选取及敏感性分析的图10

坡向及坡形变率

坡形可以利用地表的曲率进行描述和量化,直线形和凸型斜坡在曲率上的体现是曲率≥0,凹型坡和阶梯型坡的曲率<0,因此,可利用ArcGIS平台从DEM数据中提取调查区地表曲率信息,(平面曲率

I、激活坡向数据。

II、从【Surface】菜单中选择【DeriveSlope】命令。

III、生成平面曲率层面Slopeof Aspect

然后进行斜坡坡形的归一化。由于滑坡和崩塌主要发育在直线型斜坡和凸型斜坡上,因此,当曲率<0时,坡面为凹型或阶梯型,易发程度最低;当曲率>0时,坡面为直线型和凸型,易发程度较高,按照曲率的大小进行0~1之间的线性归一化,得到斜坡坡形指标归一化结果(图5-1-6,5-1-7)。

干货:地质灾害区划与评价因子选取及敏感性分析的图11

5-1-6坡向归一化图                

干货:地质灾害区划与评价因子选取及敏感性分析的图12

5-1-7坡形曲率归一化图

干货:地质灾害区划与评价因子选取及敏感性分析的图13

海拔高程

海拔高程对地质灾害的控制作用主要表现在,一方面,海拔高程影响了地下水的分布,特别是潜水层的分布,松散岩土体构成的斜坡体内的地下水多为潜水,高程越高,潜水分布越少,对斜坡的影响越小。另一方面,海拔高程对人类活动范围起控制作用,人类大多居住在海拔较低的河流沿岸,也多在海拔较低的地方进行生产活动,如开垦耕地。这些因素影响着地质灾害的发育。因此,海拔高程也是地质灾害危险性评价考虑的因素之一。利用DEM的高程信息进行求解,最后进行栅格化和归一化处理(图5-1-8)。

干货:地质灾害区划与评价因子选取及敏感性分析的图14

5-1-8海拔高程与灾害点关系

干货:地质灾害区划与评价因子选取及敏感性分析的图15

沟壑密度

前已述及,沟壑密度是地形发育阶段和地表抗蚀能力的重要特征值,对地质灾害的发育有重要的影响作用。本次工作主要利用ARCGIS平台中的Hydrology工具集,基于工作区1:5万栅格DEM提取各流域单元的沟壑密度(图5-1-9),主要步骤如下:

1、对工作区dem数据进行洼地填平。

2、利用GIS水文分析,得到提取区域的水流方向矩阵、水流累计矩阵。

3、给定不同集水阀值,将水流方向累计矩阵中高于此阀值的格网连接起来得到矢量的沟壑网络。

4、对上一步提取的不同集水阀值下的沟谷网络依据与实际形态的拟合程度进行对比分析,确定提取水文网和沟壑流域网络最终的集水阀值。

5、利用上一步确定的集水阀值分别提取水文网和流域沟壑网络,并计算各流域的沟谷总长度和面积。

6、依据得到的沟壑总长度和面积求得各流域的沟壑密度值。

7、将各流域的沟壑密度进行归一化处理并转换为栅格数据参与评价。

干货:地质灾害区划与评价因子选取及敏感性分析的图16        

5-1-9沟壑密度图

干货:地质灾害区划与评价因子选取及敏感性分析的图17

植被指数

通过天水市秦州区1999年8月ETM+遥感数据,选择近红外波段4和可见光红波段3,进行计算求取植被指数NDVI,之后将计算结果进行归一化处理参与评价(图5-1-10)。

干货:地质灾害区划与评价因子选取及敏感性分析的图18

5-1-10植被指数图(NDVI)


干货:地质灾害区划与评价因子选取及敏感性分析的图19

水系发育

水系是诱发因子中对地质灾害影响较大的一个因素,基于DEM提取区内水系发育情况,参与易发性评价,500m缓冲区内,近30%灾害点落入区内,如缓冲区达到1000m,则灾害点个数达到120余个,占60%以上。(图5-1-11)。

   干货:地质灾害区划与评价因子选取及敏感性分析的图20

5-1-11 水系发育与灾害点关系图


干货:地质灾害区划与评价因子选取及敏感性分析的图21

人类工程活动

人类工程活动对地质环境的影响是极为复杂的,区内对地质环境改造较为强烈的人类活动即为公路、铁路等线状工程的修建,本次评价将工作区内的公路(包括国道、省道及县主要干道)、铁路做为基准线,间隔500m做缓冲区分析,分别向两边做三个缓冲区,再经栅格化和归一化处理后参与评价(图5-1-13)。

 干货:地质灾害区划与评价因子选取及敏感性分析的图22

5-1-13人类活动归一化图


登录后免费查看全文
立即登录
App下载
技术邻APP
工程师必备
  • 项目客服
  • 培训客服
  • 平台客服

TOP