OptFuture | 增材制造中的晶格结构
1前言
在工业4.0中,制造业的重点从传统制造转向了先进制造,增材制造技术作为复杂结构制造的新型制造技术被广泛应用于航空、汽车、电子和医疗领域,这些复杂结构通常是多孔晶格结构,具有质量轻,比强度高和制造成本低等优点。3D打印技术已趋于成熟的今天,晶格结构在产品设计中变得越来越普遍。OptFuture作为国产工业软件实力新秀,积极开发了超材料模块,其中的晶格结构数字化生成技术已在2024 V2.0版本中正式上线,本文即对该功能进行简要介绍。
2晶格结构类型
常见的晶格结构包括梁杆类点阵晶格、TPMS晶格、蜂窝和平板结构,其中梁点阵晶格具有较好的比强度,且适合轻量化设计;TPMS晶格可以提供全面的机械性能;蜂窝和平板结构具有良好的导电性能和光学性能。目前OptFuture超材料模块支持梁杆类点阵晶格,具体包括体心立方、面心立方、简单立方和中心立方等几种类型(参考图1),其余类型的晶格结构将在后续版本中陆续上线。
图1 左到右依次为体心立方、面心立方、简单立方和中心立方
3晶格结构应用示例
在工程产品开发中,晶格结构常应用于轻量化、医疗、热管理、减振和吸能等场景。使用OptFuture的超材料模块可以轻松完成各种工业产品的晶格结构填充设计,用户只需要指定待填充的区域,并设置单胞类型和单胞的尺寸参数即可提交求解。下面为大家展示一些晶格结构的案例。
晶格结构具有多孔填充的几何特征,因此可以设计为吸能结构。通过改变不同区域的点阵填充密度和单胞类型,可以有效地吸收不同方向的能量。与通用产品中使用的泡沫结构相比,复杂的晶格结构可以在多个方向重新定向并更好地分配能量以吸收冲击力,更好地发挥现代增材制造技术的优势。图2为一种骑行头盔,案例中使用OptFuture超材料模块的体心立方进行填充,单胞尺寸7mm,梁晶格杆尺寸2mm,生成效果如图所示。
图2 骑行头盔及体心立方晶格填充
医疗行业中也广泛应用了各类晶格结构。研究表明,膝关节和髋关节植入物中的晶格结构可以促进植入物中的骨组织生长,3D 打印的钛晶格植入物在部分或全膝关节置换后的胫骨近端载荷环境可以与自然状态下保持相似[1],这是传统固体植入物所不具备的。此案例中使用OptFuture超材料模块的中面心立方体对髋关节骨体进行填充,单胞尺寸6mm,杆尺寸1mm,髋关节示意图及面心立方晶格填充效果如图3所示。
图3 髋关节骨骼的面心立方晶格填充效果
在许多工业产品的设计中,质量是一个格外重要的控制指标。基于晶格结构的壳体设计通常用在结构轻量化设计中,这种设计可以减少材料使用,有效控制壳体的质量。图4为液体火箭发动机涡轮泵,此案例对中间回转对称的法兰部件的壳体进行晶格结构填充。使用OptFuture超材料模块的简单立方进行填充,单胞尺寸2.5mm,杆半径0.15mm。
图4 液体火箭发动机涡轮泵及法兰盘简单立方晶格填充效果
运动鞋的鞋底结构为整鞋提供了稳定性,其缓冲和回弹作用能够吸收运动中产生的冲击力,在剧烈运动中为运动员提供保护以及舒适的脚感。采用晶格结构设计得到的鞋底结构不仅能将可以将减振缓冲发挥到极致,还能同时达到轻量化设计的目的,助力运动员取得更好的成绩。在此案例中,使用OptFuture超材料模块的中心立方对鞋底结构进行填充,单胞尺寸10mm,杆尺寸0.8mm。
图5 运动鞋底的中心立方晶格填充效果
4小节
OptFuture软件最新上线的晶格结构数字化生成功能,为工业零部件的晶格结构填充提供了便利的实现手段,欢迎各位读者朋友们使用该功能,并提出改进建议。
感兴趣的读者朋友可以直接进入我们的官网注册账号进行软件试用,往期文章内所提到的模型参数以及OptFuture模型,可以通过我们的官方公众号(见文末二维码)或者客服微信群索取。
客服微信
往期推荐
OptFuture拓扑优化制造约束(二)
OptFuture拓扑优化制造约束(一)
OptFuture | 基于冷壁热流的飞行器天线温度场计算

工程师必备
- 项目客服
- 培训客服
- 平台客服
TOP
