热力耦合分析单元简介

图片1.png

SOLID5-三维耦合场实体
具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。本单元由8个节点定义,每个节点有6个自由度。在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。在结构和压电分析中,具有大变形的应力钢化功能。与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。
INFIN9-二维无限边界
用于模拟一个二维无界问题的开放边界。具有两个节点,每个节点上带有磁向量势或温度自由度。所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。使用热自由度时,只能进行线性稳态分析。
PLANE13-二维耦合场实体
具有二维磁场、温度场、电场和结构场之间有限耦合的功能。由4个节点定义,每个节点可达到4个自由度。具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。具有大变形和应力钢化功能。当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。
LINK31-辐射线单元
用于模拟空间两点间辐射热流率的单轴单元。每个节点有一个自由度。可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。
允许形状因子和面积分别乘以温度的经验公式是有效的。发射率可与温度相关。如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。
LINK32-二维传导杆
用于两节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于二维(平面或轴对称)稳态或瞬态的热分析问题。
如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。
LINK33-三维传导杆
用于节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于稳态或瞬态的热分析问题。
如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。
LINK34-对流线单元
用于模拟节点间热对流的单轴单元。该单元每个节点只有一个温度自由度。热对流杆单元可用于二维(平面或轴对称)或三维、稳态或瞬态的热分析问题。
如果包含热对流单元的模型还需要进行结构分析,热对流单元可被一个等效(或空)的结构单元所代替。单元的对流换热系数可分为非线性,即对流换热系数是温度或时间的函数。
PLANE35-二维六节点三角形热实体
它是一个与八节点PLANE77单元兼容的三角形单元。适用于形状不规则的模型(例如从不同的CAD/CAM系统产生的模型)划分网格。只有一个温度自由度。
适用于二维的稳态或瞬态热分析。如果包含该单元的模型还需进行结构分析,可被一个等效的结构单元(如PLANE2)所代替。可用作平面单元或轴对称环单元。
INFIN47-三维无限边界
用于模拟无边界场问题的开放边界。其单元形状为四节点四边形或三节点三角形,每个节点可以有磁势或温度自由度。所依附的单元类型可以是SOLID5、SOLID96或SOLID98磁单元,也可以是SOLID70、SOLID90或SOLID87热实体单元。具有磁自由度时,可以进行线性或非线性静态分析。具有热自由度时,只能进行静态分析(线性或非线性)。
PLANE55-二维热实体
可作为一个具有二维热传导能力的平面或轴对称环单元使用。具有四个节点,每个节点只有一个温度自由度。
可用于二维稳态或瞬态热分析问题,并可以补偿由于恒定速度场带来的质量输运热流。如果包含热单元的模型还需进行结构分析,该单元应当被一个等效的结构单元(如PLANE42)所代替。
此单元有一个选项,用来模拟通过多孔介质的非线性稳态流动(渗流)。此时,原有的热参数被解释成相似的流体流动参数。
SHELL57-热壳
三维的具有面内导热能力的单元,具有四个节点,每个节点一个温度自由度。该单元可用于三维的稳态或瞬态的热分析问题。
如果包含本单元的模型还需要进行结构分析,可被一个等效的结构单元代替(如SHELL63)所代替。如果面内及横向的导热都需要考虑的话,则需要使用实体单元SOLID70或SOLID90。
SOLID70-三维热实体
具有八个节点,每个节点一个温度自由度。该单元可用于三维的稳态或瞬态的热分析问题,并可补偿由于恒定速度场质量输运带来的热流损失。如果包含热实体单元的模型还需进行结构分析,可被一个等效的结构单元(如SOLID45)所代替
此单元有一个选项,用来模拟通过多孔介质的非线性稳态流动。此时,原有的热参数被解释成相似的流体流动参数。例如,温度自由度等效为压力自由度。
MASS71-热质量
点单元,只有一个温度自由度。具有热容但忽略内部热阻的物体,如果其内部无明显的温度梯度,则可使用热质量单元来模拟它以进行瞬态热分析。该单元还有一个功能,即温度与热产生率相关的能力。可用于一维、二维或三维的稳态或瞬态热分析。
在稳态求解中,它只起到温度相关的热源或热的接收器的作用。其它在热分析问题中有特殊用途的单元为COMBIN14和COMBIN40。
如果包含热质量单元的模型还需要进行结构分析,该单元可被一个等效的结构单元所代替(如MASS21)。
PLANE75-轴对称谐分析热实体
可作为具有三维导热能力的轴对称单元使用。有四个节点,每个节点只有一个温度自由度。它是PLANE55单元轴对称型的一般形式,可承受非轴对称载荷。在剪切偏移中描述了各种载荷情况。
该单元可用于二维轴对称的稳态或瞬态热分析问题。其等效结构单元如PLANE25,相似的带中间节点的单元是PLANE78。
PLANE77-二维八节点热实体
是PLANE55的高阶形式,每个节点只有一个温度自由度。八节点单元有协调的温度形函数,尤其适用于描述弯曲的边界。
PLANE78-八节点轴对称谐分析热实体
可作为具有三维导热能力的轴对称单元使用。每个节点只有一个温度自由度。它是PLANE77单元的一般形式,可承受非轴对称载荷。在剪切偏移中描述了各种载荷情况。
八节点单元有协调的温度形函数,尤其适用于描述弯曲的边界。
该单元可用于二维轴对称的稳态或瞬态热分析问题。其等效结构单元如PLANE83。
SOLID87-三维十节点四面体热实体
特别适合于对不规则的模型(例如从不同的CAD/CAM系统产生的模型)划分网格。每个节点只有一个温度自由度。
可用于三维的热稳态或瞬态分析问题,其等效的结构单元如SOLID92。
SOLID90-三维二十节点热实体
三维的八节点热单元SOLID70的高阶形式。二十个节点,每个节点一个温度自由度。二十节点单元有协调的温度形函数,尤其适用于描述弯曲的边界。
适用于三维的稳态或瞬态热分析问题。其等效的结构单元如SOLID95。
INFIN110-二维无限实体
用于模拟一个二维的边界开放的极大场问题,其一个单层用于描述无限体的外部子域。具有二维(平面的和轴对称)磁势能,温度,或静电势能特性。由四或八节点定义,每个节点有单一的自由度。所依附的单元类型可以是PLANE13和PLANE53磁单元,PLANE55、PLANE35和PLANE77热单元,或静电单元121。加上磁势或温度自由度后,分析可以是线性的或非线性的,静态的或动态的。
INFIN111-三维无限实体
用于模拟一个三维的边界开放的极大场问题,其一个单层用于描述无限体的外部子域。具有二维(平面的和轴对称)磁势能,温度,或静电势能特性。由八或二十节点定义,有三维磁标量和向量势能,温度或静电势能特性。每个节点有单一的自由度。封闭的单元类型可以是SOLID96和SOLID97和SOLID98和SOLID5和SOLID62磁单元,SOLID70和SOLID90和SOLID87热单元,或静电单元SOLID122和SOLID123。加上磁势或温度自由度后,分析可以是线性的或非线性的,静态的或动态的。
对这个单元的几何体,节点坐标和坐标系在INFIN111中显示。由八或二十个节点和材料参数定义。必须定义非零的材料参数。
SHELL131-4节点热层壳单元
三维的层壳单元,具有面内和厚度方向的热传导能力。本单元四个节点,每个节点最多可以有32个自由度。本单元适用于三维的稳态或瞬态热分析问题,产生的节点温度可施加于结构壳单元以用于模拟热弯曲。其等效的结构单元如SHELL43、SHELL63、SHELL143或SHELL181。
SHELL132-8节点热层壳单元
三维的层壳单元,具有面内和厚度方向的热传导能力。本单元八个节点,每个节点最多可以有32个自由度。本单元适用于三维的稳态或瞬态热分析问题,产生的节点温度可施加于结构壳单元以用于模拟热弯曲。其等效的结构单元如SHELL91、SHELL93、SHELL99。

工程热物理及仿真热力耦合

热力耦合分析单元简介的评论1条

热力耦合分析单元简介的相关案例教程

随着科技的不断发展,结构分析在工程领域中扮演着越来越重要的角色。在进行结构分析时,选择合适的分析单元类型是关键的一步。Ansys作为结构分析领域的顶级软件,提供了丰富的分析单元类型,以满足不同工程需求。本文将全面介绍Ansys中常见的结构分析单元类型及其特点,帮助更好地了解和选择合适的分析单元类型。 一、Ansys结构分析常见单元类型 1、BEAM梁单元 梁单元是用于螺栓(杆),薄壁管件,C 形截
很多CAE工程师都了解Ls-dyna软件,大部分工程师都用它来做碰撞、跌落等显式动力学分析。很少人用Ls-dyna做隐式分析,这篇文章就为大家介绍Ls-dyna进行隐式分析的方法。 一、显式算法和隐式算法 Ls-dyna显式算法采用中心差分法进行时间积分,适合高频非线性动力学响应分析,理论方程: Ls-dyna隐式算法采用Newmark隐式时间积分,适合静力学、低频动力学及模态分析,理论方程: 二
F 合适窗口大小F 合适窗口大小 D display窗口 H help文件 F2 delete panel F12 auto mesh panel F10 elem check panel F5 mask panel F6 element edit panel Ctrl+鼠标左键 旋转 Ctrl+鼠标滑轮滑动 缩放 Ctrl+鼠标滑轮画线 缩放画线部分 Ctrl+鼠标右键 平移 F11 quick
摘要:在LS-DYNA分析中经常会使用实体单元与壳体单元以满足不同部位的分析要求,这就存在壳与实体单元连接时自由度不匹配的问题。本文详述三种不同的连接方法案例。如果不需要传递转动可以使用合并节点法和约束法,合并节点法要求节点重合,计算效率最高,约束法不要求节点重合。接触法可以传递转动,接触法使用最为灵活,消耗的计算资源较多。 壳体单元的每个节点只有3个沿着x、y和z方向的平动自由度UX、UY、UZ
该示例问题演示了如何使用独立于网格的增强单元来执行印刷电路板(PCB)的热结构分析。 重点介绍了以下特性和功能: • 使用离散和涂抹的加固单元进行建模。 • 热分析后进行下游结构分析。 介绍 印刷电路板(PCB)在电子设备和其他相关应用中无处不在。一般来说,PCB是由多层层压材料和多层树脂粘合而成的。这些层嵌入有导电金属部件和垂直穿过这些层的金属通孔。 在有限元分析(FEA)中
影响力
粉丝
内容
获赞
收藏
    项目客服
    培训客服
    1 2