西安交大《JMST》:新的强韧化机制!晶界沉淀诱发晶界非等原子比高熵相相变

第一作者:齐永良
通讯作者:江 峰、刘 峰、孙 军
通讯单位:西安交通大学金属材料强度国家重点实验室;西北工业大学分析测试中心
DOI:https://doi.org/10.1016/j.jmst.2021.01.061
通常,晶界沉淀颗粒的析出会对合金塑性产生显著的不利影响,在拉伸载荷作用下容易发生晶间断裂,导致合金塑性大幅下降。为此,我们提出了一种全新的策略,利用晶界沉淀颗粒引起的局部应力集中作为驱动力来触发晶界处预设的非等原子比高熵相的相变。这种在晶界处的原位应力诱导相变引入了相变诱发塑性(TRIP)效应,使得沉淀强化型(FeCoNiCr)90Ti5Al5高熵合金能够兼具高强度和高塑性(抗拉强度高于1.5 GPa,断后延伸率高于38%)。这种“局部应力集中诱发晶界亚稳相相变”的策略可以充分利用晶界沉淀颗粒的生成(而不是避免)同时提高高熵合金的强度和塑性。
金属材料晶界上的沉淀颗粒可以通过多种效应的叠加,在提高合金强度方面发挥重要作用,如晶界上的沉淀颗粒可以通过促进晶粒的形核和阻碍晶粒的长大来细化晶粒,同时在变形过程中可以作为物理障碍,阻碍位错运动。然而,这些晶界沉淀颗粒在大幅增加金属材料强度的同时,通常也会导致金属材料塑性的显著损失。在加载条件下,由于晶界沉淀颗粒与基体之间弹塑性变形的高度不相容性,会在晶界沉淀颗粒和基体界面处产生较高的局部应力集中。如果持续拉伸含有大量晶界沉淀颗粒的合金,会导致合金晶界局部应力水平迅速增加,从而会很快产生界面微裂纹、沉淀颗粒脱粘和最终的晶间断裂。
由于晶界沉淀颗粒诱发的晶间脆化是安全关键应用中需要重点关注的问题,因此研究者们一直致力于克服由晶界沉淀引起的负面影响。研究者经常采用的一种策略是抑制晶界沉淀颗粒的析出,同时促进晶粒内部沉淀颗粒的析出。然而,这种策略在很大程度上限制了合金的成分和力学性能。另一个流行的策略是尽可能减小晶界沉淀颗粒的尺寸,同时尽可能使其在合金中均匀分布,以分散局部应力集中。然而,以上这些方法显然不能根本性地解决问题。解决这一长期困扰材料科学家和工程师问题的关键,在于探索如何创新地利用晶界颗粒和基体界面的局部应力集中作为驱动力来触发有利于提高合金塑性的强化机制,如相变诱发韧性和相变诱发塑性机制等。也就是说,如何能够实现利用晶界沉淀颗粒细化晶粒、阻碍位错运动大幅度提高合金强度的同时,还能够大幅度提高合金的塑性。
从这一设想出发,本文提出了一种利用晶界沉淀颗粒引发的局部应力集中来激发预置在晶界上的机械亚稳相相变的新策略:在合金拉伸变形前,通过采用特定的压力加工或热处理工艺手段,在晶界析出颗粒周围预置机械亚稳相,作为预置相变区。当外加应力引起的局部应力集中达到临界相变应力时,这些预置相变区将被迫发生相变,从而产生相变诱发塑性机制。
基于此,西安交通大学金属材料强度国家重点实验室孙军教授、江峰教授和西北工业大学分析测试中心刘峰教授合作,通过采用大变形量冷轧变形(90%)和中温时效工艺(650 ℃/24 h),在新设计的晶界沉淀强化型(FeCoNiCr)90Ti5Al5高熵合金的晶界上预置了非等原子比Cr51Fe25Co18Ni6机械亚稳相(Cr-rich相)。在室温拉伸变形过程中Cr-rich相在晶界沉淀颗粒(Heusler相)引起的局部应力集中作用下发生了从体心立方向密排六方结构的相变,实现了晶界沉淀强化型(FeCoNiCr)90Ti5Al5高熵合金强度和塑性的同时提升。
Fig. 1. Schematic of the novel strategy of using local stress concentration-induced phase transformation at grain boundaries (GBs). (a) GB regions with precipitates are prone to initiating cracks due to the local stress concentration induced by GB precipitates. (b) The proposed strategy of using this local stress concentration to trigger a phase transformation of the second phase preseted at GBs, providing additional transformation-induced plasticity (TRIP).
Fig. 2. Exceptional combination of strength and ductility achieved by the CR-Ti5Al5 alloy at room temperature. (a) Engineering stress–engineering strain curves of the Ti5Al5 alloy samples (NCR-Ti5Al5, CR-Ti5Al5-1, and CR-Ti5Al5-2). The insert shows the corresponding true stress and work-hardening rate curves as a function of true strain. (b) Yield strength (YS) versus the product of strength and elongation of the designed Ti5Al5 HEA compared with those of other high-performing FeCoNiCr-based HEAs.
Fig. 3. Typical microscopic structure of the undeformed CR-Ti5Al5 HEA. (a) A STEM-HAADF image showing a unique four-phase structure: bcc Heusler precipitates and Cr-rich bcc phase in the GB region, and fcc matrix and fcc L12 nanoprecipitates in the grain interior. (b) STEM-EDS maps revealing the qualitatively elemental distribution among the four phases in the alloy, confirming the presence of the Cr-rich phase. (c-e) SAED patterns of c the Cr-depleted bcc Heusler precipitate, (d) the disordered Cr-rich bcc phase, and e the disordered fcc matrix containing Cr-depleted L12 nanoprecipitates. (f) High-resolution SEM image showing the morphology of the three phases: Heusler particles (blue arrows), L12 particles (red arrows), and Cr-rich phase (green arrows) in the alloys. (g-j) Atomic-scale analyses using atom probe tomography (APT). (g) Three-dimensional (3D) reconstruction of the 45 at.% Cr and 12 at.% Ni isoconcentration surfaces presenting the morphologies of the Cr-rich phase and its neigh boring matrix. (h) One-dimensional (1D) concentration profile quantitatively showing the chemical composition of the Cr-rich phase and its neigh boring matrix. (i) 3D reconstruction of the 35 at.% Ni isoconcentration surfaces revealing the morphology of the L12 nanoprecipitates in the matrix. The number density and average diameter of the L12 nanoprecipitates were 4.79 × 1023 m-3 and ~5.9 nm, respectively. (j) 1D concentration profile quantitatively showing the chemical composition of the L12 nanoprecipitates and the matrix.
Fig. 4. Tensile deformation mechanisms in the CR-Ti5Al5 HEA at room temperature. (a) Bright-field TEM images at a tensile strain of 5% showing interaction of the Cr-rich phase and Heusler particles. A considerable number of dislocations (white arrows) pile up at the interface between the Cr-rich phase and the Heusler particles, indicating a severe local stress concentration. (b-g) Representative TEM-EDS images after tensile fracture showing the Cr-rich phase undergoing a stress-induced phase transformation from the original bcc to hcp structure. (b) STEM-HAADF image showing a typical deformed microstructure containing Heusler particles, microvoids (red circles), the Cr-rich hcp phase, and stacking faults (SFs, yellow arrows). (c) Qualitative STEM-EDS showing the elemental distribution corresponding to (b). (d), (e) Microdiffraction patterns of the Heusler and Cr-rich hcp phases, respectively. (f) Interface between the L21 and Cr-rich hcp phases showing a clear dislocation wall (the region outlined by red dotted lines). (g) Interface (red dotted line) between the Cr-rich hcp phase and fcc matrix.
本文在晶界沉淀强化型(FeCoNiCr)90Ti5Al5高熵合金中引入了一个全新、可显著增加合金加工硬化能力的变形机制:晶界应力集中诱发晶界第三相相变。这种新的变形机制,可以弥补传统的沉淀强化型高熵合金单纯依靠位错滑移机制而导致加工硬化能力不足的缺点,通过相变诱发塑性效应显著提高合金的加工硬化能力,使合金在具有高强度的同时兼具优异的塑性,呈现出更佳的强度和塑性组合。
作者简介
本文的通讯作者为西安交通大学孙军教授、江峰教授和西北工业大学刘峰教授,参与此项研究工作的还有西安交通大学丁向东教授、贺林教授、宗洪祥副教授、张华磊副教授、赵龙博士、孙逊博士、吴亚科博士,南京理工大学沙刚教授、靳慎豹博士。
本文第一作者为齐永良,西安交通大学博士研究生,已发表晶界沉淀强化型高熵合金SCI论文3篇,分别采用大冷变形/完全再结晶、痕量硼掺杂和利用晶界沉淀引起的局部应力集中诱发晶界非等原子比高熵相的相变等策略,来大幅提升沉淀强化型高熵合金的力学性能。
本文来自“JMST期刊”。

工程师必备
- 项目客服
- 培训客服
- 平台客服
TOP
