【CAE案例】橄榄废料燃烧锅炉飞灰沉积的仿真模拟

01

研究背景

西班牙作为世界上最大的橄榄油生产国之一,每年都需要处理其因橄榄油生产而产生的大量油渣。橄榄油渣可用于生物质锅炉的燃烧发电,功率可达2 MWe 至 25 MWe,是优秀的可再生能源。但由于橄榄油渣在燃烧时会产生大量灰烬,这些生物质锅炉在工作一定时间后需要熄火停工,以清除管道上的污垢沉积物以及炉排拱顶上沉积的飞灰,防止沉积物影响传热和流动,降低锅炉效率,避免引起事故造成危险。

【CAE案例】橄榄废料燃烧锅炉飞灰沉积的仿真模拟的图1

斯坦普正在开发的生物质锅炉

【CAE案例】橄榄废料燃烧锅炉飞灰沉积的仿真模拟的图2

锅炉管道上的污垢沉积物

目前对于生物质锅炉中的飞灰沉积问题,解决方法以定期清理维护为主,但飞灰沉积对锅炉内的传热特性和工作稳定性的影响却很难评估。因此,海斯坦普通过使用Code Saturne计算流体力学软件,将流体力学仿真与其正在开发的生物质锅炉项目结合起来,运用CFD分析的方法,模拟其内部流体的流动状态以及传热特性,根据仿真结果在设计阶段优化生物质锅炉设计,预测飞灰的产生和飞灰对于锅炉性能的影响,以最大限度地提高锅炉的工作效率,并且根据仿真模拟的结果相应地调整运维策略,使得经济效益最大化。

02

模型建立

海斯坦普公司使用code_saturne 对现有投入使用的50MWt 生物质锅炉进行了CFD数值模拟,模拟中考虑了燃烧反应、辐射传热、湍流的效应,并使用拉格朗日粒子方法模拟飞灰的沉积。数值模拟过程中,对实际物理模型进行了一定的简化,并将整个橄榄油渣锅炉划分为两个不同的计算域:
  • 炉排区域:在此区域中焚烧橄榄油渣,考虑橄榄油渣的燃烧反应;
  • 熔炉区域:在此区域中不计算橄榄油渣的燃烧反应,但会计算气体之间的燃烧反应。
在整个橄榄油渣燃烧炉计算域中都将考虑不同组分的气体因密度差异而产生的浮力驱动流。
【CAE案例】橄榄废料燃烧锅炉飞灰沉积的仿真模拟的图3
炉排区域(左)和熔炉区域(右)
对于整个橄榄油渣燃烧炉的模拟通过以下步骤实现:
  1. 基于橄榄油渣的燃料特性,首先对炉排区域进行求解,以获得此区域的初始温度、速度、气体组分和粒子组成;
  2. 将炉排区域的计算结果作为熔炉区域的一部分入口条件,在熔炉区域计算由橄榄油渣产生的可燃气体的燃烧反应;
  3. 使用熔炉区域计算的结果重新计算步骤1,经过反复迭代,直到炉排区域的传出辐射热通量和熔炉区域的传入辐射热通量之间差距可以忽略为止;
  4. 通过步骤3获取整个生物质燃烧炉的流场,根据橄榄油渣的燃料特性,在冻结的流场中注入一定量的具有相应体积和重量的拉格朗日粒子,模拟飞灰,在燃烧炉壁面上设置对飞灰的吸附沉积效果,实现对于橄榄油渣燃烧炉中的飞灰沉积过程。

03

仿真模拟

下图展示了code_saturne仿真计算得出的在橄榄油渣锅炉当中温度场和速度场的云图。

【CAE案例】橄榄废料燃烧锅炉飞灰沉积的仿真模拟的图4

(a)橄榄油渣锅炉当中温度场云图   (b)橄榄油渣锅炉当中速度场云图
采用拉格朗日粒子跟踪方法模拟飞灰的沉积,如下图所示:

【CAE案例】橄榄废料燃烧锅炉飞灰沉积的仿真模拟的图5

(c)橄榄油渣锅炉粉状燃料粒子跟踪图
根据模拟结果,可以发现飞灰在炉排区域产生之后,在流场的作用下被携带至熔炉区域,并沉积在熔炉底部。模拟结果与海斯坦普公司所进行的实验和运维记录十分吻合。通过数值模拟,相关的运维人员可以对飞灰沉积的位置和量有清晰的把控,根据数值模拟的结果相应地调整的日常的维护策略,针对性对锅炉进行清理,提高生产效率和经济效益。

04

结论

使用code_saturne对橄榄废料燃烧锅炉的飞灰沉积问题进行模拟,与实验和实际数据进行对比,模拟结果展现出良好近似。code_saturne可以较为准确地模拟生物质橄榄油渣飞灰沉积的现象,并可以作出预测。在设计阶段可以使用CFD数值模拟优化相关的工程设计,改善燃烧炉相关的工作效率;在日常的运维当中,采用CFD数值模拟可以指导相关的运维策略,使得企业生产更加可管可控,进一步提高生产效率和经济效益。

更多资讯可登录格物CAE官方网站
https://cae.yuansuan.cn/
远算在bilibili、知乎、仿真 秀定期 发布课程视频等内容
期待您的关注
技术邻.png

Code Saturne

【CAE案例】橄榄废料燃烧锅炉飞灰沉积的仿真模拟的评论0条

    暂无评论

    【CAE案例】橄榄废料燃烧锅炉飞灰沉积的仿真模拟的相关案例教程

    关于Code_Saturne Code_Saturne是法国电力集团自1997年起自主研发的一款通用计算流体力学开源软件。基于有限体积方法,支持多种类型网格,通过求解纳维-斯托克斯方程,用于处理二维、二维对称、三维,稳态或非稳态,层流或湍流,不可压或微可压流体,等温或非等温等多种计算问题。拥有多种不同的湍流模型,例如雷诺平均模型(Reynolds Average Navier-Stokes: RA
    01 研究背景 什么是压气机的旋转失速问题? 旋转失速是沿压气机周向的非均匀流动状态。失速现象一般首先发生在叶轮处,当离心式或轴流式压缩机的操作工况发生变动时,气流会在叶片的凹面附近形成气流漩涡,气流漩涡的聚集会阻碍通道内的气流流通,减少通道内的有效流通面积,形成气流堵塞团,不但会使发动机性能(推力、经济性)大为恶化,限制发动机的工作范围,更严重的可能会引起发动机突然熄火,或引起压气机叶片剧烈振动
    01 研究背景 流致振动是目前核反应堆技术,尤其是压水堆相关技术的主要研究课题。除了需要防止流体弹性不稳定现象导致快速失效之外,还需要考虑流动过程中湍流的长期激励影响。例如,微动磨损仍然是世界范围内燃料棒泄漏的主要原因之一,这是湍流引起的燃料棒振动造成的。 该课题的研究目前主要通过专门的实验来进行,使用数值模型的方法模拟这一过程对于计算流体动力学(CFD)软件来说仍然具有挑战性,因为在燃料组件内的
    01 研究背景 换热器(Heat Exchanger)是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器应用广泛可,作为加热器、冷却器、冷凝器、蒸发器和再沸器等。对换热器进行流体仿真,能帮助了解换热器内冷热流体的温度分布和热量交换效率,对指导换热器的设计具有重大意义。由于换热器对热量交换效率的要求,换热器从流体
    点蓝色字关注“远算云学院” 壹 软件介绍 code_saturne是法国电力集团(EDF)研发的一款通用计算流体力学开源软件。基于有限体积方法,支持多种类型网格,通过求解纳维-斯托克斯方程,用于处理二维、二维对称、三维,稳态或非稳态,层流或湍流,不可压或微可压流体,等温或非等温等多种计算问题。 软件涵盖大气模拟、煤粉、重质燃料及生物质的燃烧、电弧与焦耳效应、颗粒追踪、流体机械转子-定子互动等多种工
    首席工程师
    影响力
    粉丝
    内容
    获赞
    收藏
      项目客服
      培训客服
      0 1