FLUENT中的非稳态的残差曲线

FLUENT中可选耦合式和分离式解法。

对于非稳态问题,unsteady, 则会出现时间相关项的计算方法选项: 如一阶隐式,二阶隐式、

注意,显式只是对于耦合显式求解器有效。

PISO适合于瞬态模拟,特别是时间步长较大到情况。取1.0的欠松弛因子可以保证计算的稳定性。或者网格变形度高的地方。但是对于LES而言,由于LES需要更小的时间步长,因此不适合用PISO。LES 最好使用SIMPLE(C)算法。

 

Courant Number 用来控制耦合求解的时间步长。时间步长与courantnumber成正比。因此显式需严格控制时间步长,courant number。

非稳态的残差图中,每一次更新都会使残差变大,因此会是一条振荡的曲线。此外,x轴是对数轴,因此每次屏满了之后都会重新调X轴,导致曲线弯曲。

时间步长越小,越不容易发散,特别是显式计算对时间步长的要求很严格。如果在设定的最大迭代数(20)内还没收敛,可能是要减小时间步长或者减小courant数。

 

 通过残差曲线来看收敛性:

- 一般的,残差下降三个数量级表示至少达到了定性的收敛,流场的主要特征已经形成。

- 压力基求解器的能量残差应该下降到10-6以下

- 检查全局通量守恒:检查(NetResults)应该小于通过边界通量的最小值的1%。(在Reports ->fluxes->mass flowrate->boundaries, 再compute)。

 收敛遇到困难????

  • 对一些病态问题,差质量的网格或者不合理的求解器设置都会出现数值的不稳定性。

  1. 变现为残差曲线上扬(不收敛,发散)或者几乎水平(不下降)

  2. 发散意味着守恒方程的不平衡增加。(Imbalance)

  3. 没收敛的结果会误导使用者


  • 解决办法

  1. 确保研究的问题是物理合理的(也许物理模型建错了)

  2. 用一阶离散格式计算一个初场(更加接近真实的初始化)

  3. 对于压力基求解器,减小松弛因子(小的松弛因子可以增加收敛稳定性,但是会减慢收敛速度)

  4. 对于密度基求解器,减小courant number (FLUENT最好刚开始使用较小的courant number,否则容易导致迭代发散,然后观察残差,将其逐渐加大)。

  5. 实在不行,就只能重新生成网格或者加密质量差的网格( 网格自适应不能提高扭曲大的网格质量)


 注意啦,对于密度基求解器,即使稳态问题也存在瞬态项。因此必须要用courant number限制时间步长。

- 对于显式求解器,courant number<2

- 对于隐式求解器,courant number<5

登录后免费查看全文
立即登录
App下载
技术邻APP
工程师必备
  • 项目客服
  • 培训客服
  • 平台客服

TOP