FLUENT不收敛案例+边界层分离时湍流模型的选用

今天分享一个FLUENT计算不收敛的案例及其解决办法。计算的对象是一个文丘里管,如图1所示,入口直径为28mm,出口直径为50mm。计算所用的网格如图2所示,采用四面体非结构网格,但壁面附近采用棱柱网格以更好地分辨边界层的流动注1

640.webp.jpg

                                                                                    (a)三维图


640.webp (1).jpg

                                                                                      (b)截面图

                                                                                图1  计算的文丘里管。

640.webp (2).jpg

                                                                                       图2  网格

流动的工质为空气,由于流动马赫数很低,采用不可压缩流体模型,密度=1.225kg/m3,粘性系数=1.7894×10-5Pa·s。入口边界条件为:总压=1000Pa,湍流强度=3%,水力直径=28mm。出口边界条件为:静压=0Pa。注意上面所说的压力都是表压力而不是绝对压力(绝对压力=表压力+参考压力。在FLUENT里面参考压力通过设置“operating pressure”来改变。)湍流模型采用k-ω SST。

用基于压力的求解器,压力与速度的耦合方法为“Coupled”。动量方程的空间离散采用二阶迎风格式,湍流方程采用一阶迎风格式(图3)。

 

640.webp (3).jpg

                                                                            图3  计算方法及离散格式。

采用定常(Steady)算法计算发现,随着迭代次数的增加,文丘里管入口、出口的流量总是在波动,不能收敛到确定的数值(图4)。残差曲线如图5所示,可以看出绝大部分方程的残差都远没有达到默认的收敛标准(1e-3)。修改求解过程控制参数,例如松弛因子(Relaxation Factors)、Courant Number等等,都没有明显效果。

640.webp (4).jpg

                                                                                        图4  流量随着迭代次数增加的波动。


640.webp (5).jpg

                                                                                                 图5  残差曲线。

 是什么原因导致不收敛呢?通过画出流线图(图6),可以发现文丘里管的扩张段发生了边界层分离,即流动不再依附于壁面。根据以往的经验(读者可以阅读公众号以前的文章:为何我这个流动总是算不收敛?我要砸电脑!),流场中有大规模边界层分离的时候,定常算法往往都不能收敛,只有改成非定常算法才行。所以,我们尝试改用非定常算法。从理论上来说[2],有边界层分离的时候,多数情况下分离再附区以及钝体尾迹的涡脱落区属于非平衡湍流区,即湍动能瞬时生成与湍动能瞬时耗散相差较大,因此应该使用非定常算法来计算。(相反,不分离的顺压梯度边界层属于接近平衡湍流区,即湍动能生成近似等于湍动能耗散,用定常算法就足够了)

640.webp (6).jpg

                                                                                    图6  流线图。

改成非定常算法之后,发现只要设定合适的时间步长,每一个时间步内都可以迭代收敛了。图7显示的是时间步长设为0.0001的情形,每个时间步只需迭代3~4次就能让残差下降到默认的收敛标准(1e-3)以下。问题得以解决。

640.webp (7).jpg

                                                                                     图7  用非定常算法计算时命令窗口的输出。

虽然不收敛的问题得以解决,但是对于这个题还值得多说两句。对于这种型面是光滑曲线的壁面上的逆压梯度导致的分离流动,在CFD中要准确地模拟是不容易的,计算结果对湍流模型的依赖程度很大。例如,如果我们将湍流模型换成k-ε,就会发现算出的结果中并没有明显的边界层分离。这可以从图8(a)的速度x分量的云图看出来。这里我们只显示速度的x分量小于零的区域;因为边界层分离总是伴随着回流区的,而x分量小于零意味着回流。其它几种湍流模型的计算结果也在图8中进行了对比。可以看出湍流模型对这个问题的计算结果影响很大。

640.webp (8).jpg

                                                                                          a)标准k-ε

 

640.webp (9).jpg

                                                                                              b)RNG k-ε


640.webp (10).jpg

                                                                                            c)Realizable k-ε



640.webp (11).jpg

                                                                                               d)k-ω SST


640.webp (12).jpg

                                                                                              e)v2f


640.webp (13).jpg

                                                                                               f)SA

                                             图8  几种不同的湍流模型算出的结果的比较。只显示逆向流动的区域。

那究竟哪个结果最符合实际呢?这只能通过实验验证来决定。不过,有一点还是比较明确的,那就是对于这类型面是光滑曲线的壁面上的逆压梯度导致的分离流动,用k-ε模型模拟是不合适的;k-ε模型往往会显著低估边界层分离的程度。这一点在FLUENT的User’s Guide中已经明确地指出:

“The draw-back of some k-ε models is their insensitivity to adverse pressure gradients and boundary layer separation. They typically predict a delayed and reduced separation relative to observations. This can result in overly optimistic design evaluations for flows that separate from smooth surfaces (for example, aerodynamic bodies, diffusers).”

为了说明k-ε模型的这个缺点,我们再展示一个例子。这是来自于斯坦福大学Gianluca Iaccarino教授的湍流模拟讲义[1]中的例子,计算的是一个扩压器中的流动。可以看出,通过与实验数据的对比发现k-ε模型大大地低估了流动分离

640.webp (14).jpg
640.webp (15).jpg
640.webp (16).jpg

 

640.webp (17).jpg
640.webp (18).jpg
640.webp (19).jpg

如果壁面形状是不光滑的,比如有突然向外转折,那么反而简单一些,因为边界层分离通常会在转折处发生。

西华大学的学生罗亮提供了文中的算例;The University of Melbourne的研究生刘丽媛阅读了本文的初稿并提出了很好的修改建议;另外北航航空科学与工程学院的研究生靳一超和李健与作者进行了有益的讨论;在此一并表示感谢。

参考文献

[1] https://web.stanford.edu/class/me469b/handouts/turbulence.pdf

[2] 张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论与应用. 北京: 清华大学出版社, 2008


流体力学及仿真
2 0

FLUENT不收敛案例+边界层分离时湍流模型的选用的相关视频课程

FLUENT不收敛案例+边界层分离时湍流模型的选用的相关资料下载

FLUENT不收敛案例+边界层分离时湍流模型的选用的评论0条

    暂无评论

    FLUENT不收敛案例+边界层分离时湍流模型的选用的相关案例教程

    1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?学习任何一个软件,对于每一个人来说,都存在入门的时期。认真勤学是必须的,什么是最好的学习方法,我也不能妄加定论,在此,我愿意将我三年前入门FLUENT心得介绍一下,希望能给学习FLUENT的新手一点帮助。由 于当时我需要学习FLUENT来做毕业设计,老
    Fluent,并非我原创但是没找到出处,给大家做个参考。24在FLUENT运行计算时,为什么有时候总是出现“reversedflow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响?(#29)这个问题的意思是出现了回流,这个问题相对于湍流粘性比的警告要宽松一些,有些case可能只在计算的开始阶段出现这个警告,随着迭代的计算,可能会消失,如果计算一段时间之后,
    FLUENT基本概念与常见问题汇总(三)欢迎关注微信公众号:南流坊  23、单、双精度解算器Fluent的单双精度求解器适合于所有的计算平台,在大多数情况下,单精度求解器就能很好地满足计算精度要求,且计算量小。 但在有些情况下推荐使用双精度求解器:1)如果几何体包含完全不同的尺度特征(如一个长而壁薄的管),用双精度的;2)如果模型中存在通过小直径管道相连的多个封闭区域,不同区域之间存在很
    今天分享一个FLUENT的不收敛案例及其解决方法。计算的对象是一个新型的涡扇发动机加力燃烧室(图1)。在这种新型加力燃烧室中,火焰稳定器被整合到整流支板上,因此整流支板和整流锥都需要冷却。在整流支板和整流锥上开了很多小孔,冷却气从这些孔渗出,形成冷却气膜。图1 加力燃烧室这个算例模拟的是实验的工况。实验中没有在加力燃烧室内燃烧,而只是在“主流入口”处引入高温气体,在“冷却气入口”处引入冷却气,以检
    (1)连续性方程不收敛是怎么回事?     在计算过程中其它指数都收敛了,就continuity不收敛是怎么回事?    这和fluent程序的求解方法SIMPLE有关。SIMPLE根据连续方程推导出压力修正方法求解压力。由于连续方程中流场耦合项被过渡简化,使得压力修正方程不能准确反映流场的变化,从而导致该方程收敛缓慢。可以试验SIMPLEC方法,应该会收敛
    影响力
    粉丝
    内容
    获赞
    收藏