齿轮轴探伤缺陷显示原因分析

作者:张英

单位:陕西长空齿轮有限责任公司

来源:《金属加工(热加工)》杂志

本批齿轮轴共113件,成品经磁粉探伤检测,发现有4件零件在端面齿根位置出现了亮点显示。齿轮轴材料为12Cr2Ni4A,表面进行碳氮共渗,齿底渗层深度≥0.2mm,表面硬度≥60HRC,心部硬度32~42HRC。

1.宏观检查

齿轮轴外观如图1所示,肉眼观察未见异常。

对缺陷零件进行荧光磁粉探伤检查,在局部齿根处可见细微的荧光磁粉显示。缺陷显示位置相同,形貌相似,如图1、图2所示。其余表面均未发现磁痕显示。

齿轮轴探伤缺陷显示原因分析的图1

图1 齿轮轴宏观形貌

齿轮轴探伤缺陷显示原因分析的图2

图2 齿轮轴齿端面上的缺陷显示 图3 另一半圆周上无缺陷显示

裂纹在齿轮轴端面的分布位置如图4所示。齿轮轴有4个齿根分别存在1条裂纹,编号分别为1#~4#裂纹。

齿轮轴探伤缺陷显示原因分析的图3

图4 裂纹在齿轮轴端面的分布位置

1#~4#裂纹外观比较相似,2#裂纹和3#裂纹如图5、图6所示,裂纹由齿根表面沿齿轮轴径向和轴向向内部扩展,沿径向较平直,沿轴向较曲折。其中,1#裂纹的径向长度为0.358mm、轴向长度为1.295mm;2#裂纹的径向长度为0.354mm,轴向长度为1.30mm;3#裂纹的径向长度为0.334mm,轴向长度为1.208mm;4#裂纹的径向长度为0.302mm,轴向长度约为1.20mm。

齿轮轴探伤缺陷显示原因分析的图4

(a)2#裂纹横端面(径向)形貌(b)2#裂纹齿根面(轴向)形貌

图5 2#裂纹外观

齿轮轴探伤缺陷显示原因分析的图5

(a)(b)

图6 3#裂纹横端面(径向)形貌

2.断口观察

人为打开2#、3#裂纹,对裂纹断口进行宏微观观察。

2#、3#裂纹断口形貌相同。裂纹断口宏观较平整、未见明显塑性变形,源区位于齿根端角(齿根与横截面相交的端角)表面、小线源特征;齿根与横截面相交的端角不够圆滑,且加工面较粗糙,形貌如图7、图8所示。裂纹扩展区主要为沿晶形貌,局部为韧窝形貌,如图9、图10所示;人为打断区为韧窝形貌,如图11所示。

齿轮轴探伤缺陷显示原因分析的图6

(a)(b)

图7 2#裂纹断口及源区位置

齿轮轴探伤缺陷显示原因分析的图7

图8 3#裂纹断口

齿轮轴探伤缺陷显示原因分析的图8

(a)(b)

图9 2#裂纹扩展区断口

齿轮轴探伤缺陷显示原因分析的图9

图10 3#裂纹扩展区断口图11 3#裂纹人为打断区断口

3.金相检查

沿齿轮轴横剖面制取试样,进行金相检查。齿轮轴渗层区及基体组织均未见异常,如图12~图14所示。按照HB5492—2011《航空钢制件渗碳、碳氮共渗金相组织分级与评定》,渗层区碳化物:1级,残留奥氏体及马氏体1~2级,心部基体组织为回火马氏体+少量铁素体,1~2级。均合格。裂纹外阔里细,裂纹两侧残留奥氏体量略有增加,裂纹处显微组织如图15所示。

齿轮轴探伤缺陷显示原因分析的图10

(a)50× (b)500×

图12 齿底渗层区组织

齿轮轴探伤缺陷显示原因分析的图11

图13 心部基体组织(500×)图14 1#裂纹处组织(100×)

齿轮轴探伤缺陷显示原因分析的图12

(a)200×(b)500×

图15 1#裂纹处显微组织

4.硬度检测

在齿轮轴横剖面制取的试样上进行显微硬度(渗层深度)和洛氏硬度测量,结果分别如表1~表3所示,齿轮轴的心部硬度约为41HRC,齿底表面硬度约为690HV(按GB/T1172—1999《黑色金属硬度与强度换算值》换算为洛氏硬度为59.6HRC,与技术要求的≥60HRC的下限接近(略低,与裂纹的产生关系不大),无裂纹的齿齿底渗层深度约为0.37mm,满足≥0.2mm要求。可见,齿轮轴的渗层、硬度、组织均符合技术条件要求。然而,裂纹附近齿底的显微硬度明显高于相同位置的非裂纹区,可见裂纹两侧有增碳增氮现象。

表1 齿轮轴齿底近表面硬度检测结果(0.1mm处HV0.5)

测试位置

位置1

位置2

位置3

位置4

平均值

HRC

硬度

683.59

693.78

697.17

686.96

690.38

59.6

表2 齿轮轴齿底硬度梯度(HV0.5)

齿轮轴探伤缺陷显示原因分析的图13

表3 齿轮轴基体洛氏硬度检测结果 (HRC)

测试位置

位置1

位置2

位置3

平均值

心部

38.66

41.52

41.60

41

5.分析与讨论

本批齿轮轴共113件,成品经磁粉探伤检测只发现了4件零件的局部齿根处存在缺陷显示。裂纹的位置和形貌相似。裂纹呈放射状、分布于齿轮轴的一半圆周上,而另一半圆周及其余表面均无缺陷显示。取其中的一件解剖进行原因分析。

齿轮轴裂纹宏观断口较平整,未见明显塑性变形,源区位于齿根端角(齿根与横截面相交的端角)表面、小线源特征。裂纹扩展区主要为沿晶形貌,局部为韧窝形貌,人为打断区为韧窝形貌。上述特征表明齿轮轴裂纹的性质为沿晶脆性裂纹。

齿轮轴的渗层深度、硬度和显微组织均未见异常,也均符合技术条件要求。齿轮轴的基体组织未见异常,心部硬度符合技术条件要求,裂纹附近未发现夹渣物等冶金缺陷。表明齿轮轴裂纹的产生与热处理质量和基体材质关系不大。

齿轮轴显示的4条裂纹呈放射状分布于一半圆周位置(见图4),裂纹较细小,径向长度相近(0.302~0.358mm),基本位于渗层区内(渗层深度约为0.37mm)。裂纹附近的显微硬度明显高于相同位置的非裂纹区,裂纹两侧的显微组织中残留奥氏体量有所增多等表明,裂纹两侧有增碳增氮现象。

齿轮轴的最终热处理工序安排为:碳氮共渗→高温回火→机加工→淬火→负温时效→正温时效→吹砂→精加工。工艺路线中未安排校直工序,但在高温回火工序后要求检测 “各外圆跳动≤0.1mm”。经了解,现场生产中,碳氮共渗+回火后会有个别零件外圆跳动较大,超出公差要求,加工者会挑出来对其进行校直。若校直过程控制不当,会在三点弯曲校直时拉应力最大的下半方外圆上产生裂纹。单从三点弯曲校直的受力来分析,裂纹不应沿着轴向开裂。但是由图5b和图7可见,裂纹源区过渡不够圆滑,加工刀痕粗糙。改变了零件表面的应力分布。加之渗碳层组织的变形能力较差,就在应力较大齿根端角处形成了较细小的裂纹。在随后的淬火工序,为防止原渗碳层表面脱碳,淬火在碳势约为0.88%的保护性气氛中保温约1h,此过程会使已形成的校直裂纹两侧有轻微的渗入现象,导致裂纹两侧的硬度和显微组织发生了改变。因此,该批产品内少量零件上探伤显示的缺陷为校直裂纹。

针对以上问题,我们对热处理工艺进行了细化,要求在淬火前操作者对来件的外圆跳动进行分检。跳动超差严重的直接报废,轻微的进行校直。所有经过校直的零件必须进行去应力退火和磁粉探伤,防止校直缺陷件流出,取得了良好成效。

6.结语

(1)齿轮轴磁粉探伤显示由裂纹引起,裂纹的性质为沿晶脆性裂纹。

(2)齿轮轴裂纹的产生,是因为个别零件碳氮共渗后变形超差,增加了校直工序。而由于校直过程控制不当,所以产生了应力裂纹。

登录后免费查看全文
立即登录
App下载
技术邻APP
工程师必备
  • 项目客服
  • 培训客服
  • 平台客服

TOP

1