Ansys Lumerical | 光子晶体布拉格光纤仿真应用

01 说明

FDE求解器可用于精确计算任意复杂结构的模式,包括光子晶体布拉格光纤。在此示例中,我们计算并分析了Vienne和Uranus描述的光子晶体布拉格光纤的模式。

Ansys Lumerical | 光子晶体布拉格光纤仿真应用的图1


02 综述

模拟文件bragg_PCfiber.lms包含一个参数化组对象,可以进行结构建模。最初,在x-min和y-min处使用反对称边界条件以及在x-max和y-max处使用金属边界条件设置模拟。反对称边界条件允许我们仅模拟1/4的结构,从而节省时间。但是,我们必须注意不要漏掉可能需要对称条件或对称和反对称条件的组合的重要模式。

 
03 运行和结果

首先,我们运行仿真并切换到分析模式。我们看到其中一种导模的有效折射率约为0.998。下面是圆柱坐标系中的Hr图。

Ansys Lumerical | 光子晶体布拉格光纤仿真应用的图2

要研究此类结构的损耗,需要在x-max和y-max处的边界条件设置为PML,如下所示。我们最初没有这样做,因为它会增加计算时间,并且会更难找到导模的有效折射率。当我们重新计算模式时,我们可以查看折射率0.998附近并发现不同的模式。

 

Ansys Lumerical | 光子晶体布拉格光纤仿真应用的图3

软件会计算出将近20种模式。

模式7是

Ansys Lumerical | 光子晶体布拉格光纤仿真应用的图4

模式8是

Ansys Lumerical | 光子晶体布拉格光纤仿真应用的图5

上图显示了磁场的径向和角分量,可以与Uranus等人的结果进行比较,我们将有效折射率和损耗与Uranus等人的结果进行比较。

 Ansys Lumerical | 光子晶体布拉格光纤仿真应用的图6
MODE有效折射率结果与Uranus等人的结果非常接近。对于这种对数值网格的微小变化(以及实际制造缺陷)非常敏感的结构,计算损耗则更加困难,并且需要进行一些收敛测试才能找到更准确的结果。

 
收敛测试

我们首先将感兴趣的两种模式复制到全局DECK中,并将它们重命名为TE和HE,如下所示。

 Ansys Lumerical | 光子晶体布拉格光纤仿真应用的图7
现在可以通过运行优化和扫描来测试收敛性。扫描通过增加网格数目来多次计算模态。在每一步,它都会计算一遍模式,然后将与我们已经存储在DECK中的模式具有最佳重叠的模式识别为Ansys Lumerical | 光子晶体布拉格光纤仿真应用的图8Ansys Lumerical | 光子晶体布拉格光纤仿真应用的图9模。然后,记录这些模式的有效折射率和损耗,作为所使用的网格数目的函数。

 
最终结果如下所示,可以在Visualizer中绘制。

 Ansys Lumerical | 光子晶体布拉格光纤仿真应用的图10

我们看到,当我们达到500×500网格数目时,有效折射率开始收敛,但需要更多的网格数目才能获得更高的精度。根据计算机上的内存量,可以将测试的最大单元数增加到 600×600或更多。损耗随着网格单元数增加而变化,但也开始在500×500网格数目下收敛。同样,可能需要进一步增加网格单元的最大数量以获得更准确的最终结果。500×500网格单元的结果是:

 Ansys Lumerical | 光子晶体布拉格光纤仿真应用的图11

有效折射率的一致性非常好,损失正在向Uranus等人的结果收敛。

Ansys Lumerical | 光子晶体布拉格光纤仿真应用的评论0条

    暂无评论

    Ansys Lumerical | 光子晶体布拉格光纤仿真应用的相关案例教程

    01 说明 FDE求解器可用于精确计算任意复杂结构的模式,包括光子晶体布拉格光纤。在此示例中,我们计算并分析了Vienne和Uranus描述的光子晶体布拉格光纤的模式。 02 综述 模拟文件bragg_PCfiber.lms包含一个参数化组对象,可以进行结构建模。最初,在x-min和y-min处使用反对称边界条件以及在x-max和y-max处使用金属边界条件设置模拟。反对称边界条件允许我们仅模拟1
    说明 该示例演示了一种基于光纤布拉格光栅(FBG)的温度传感器,因为光纤折射率会随温度而变化,导致其布拉格波长发生偏移,所以可以被用作温度的测量。(联系我们获取文章附件) 综述 在本示例中要考虑的光纤布拉格光栅(FBG)由具有交替折射率和恒定周期性的纤芯制成。众所周知,沿着光纤主轴的折射率变化可以在布拉格波长(λ_Bragg)下引起反向传播模式的耦合,由以下方程给出: 其中n_eff是布拉格波长下
    01 说明 该示例演示了一种基于光纤布拉格光栅(FBG)的温度传感器,因为光纤折射率会随温度而变化,导致其布拉格波长发生偏移,所以可以被用作温度的测量。 02 综述 在本示例中要考虑的光纤布拉格光栅(FBG)由具有交替折射率和恒定周期性的纤芯制成。众所周知,沿着光纤主轴的折射率变化可以在布拉格波长(λ_Bragg)下引起反向传播模式的耦合,由以下方程给出: 其中n_eff是布拉格波长下光纤基模的有
    本教程基于Lumerical FDTD模块,阐述如何构建布拉格光栅滤波器,实现特定波段的光波的导通或截止,并计算滤波器带宽。 一、建立布拉格光栅波导结构 二、设置FDTD计算区域 根据光栅尺度调整FDTD区域大小。 **着重关注上图FDTD计算边界的定义,由于验证传播方向两侧对称,可以设置Y轴方向对称边界条件,节省仿真时间。将方框中√去掉。将PML设置类型下拉框选择为第一类型。 三、添加模式光源
    附件下载 联系工作人员获取附件 在本文中,我们将了解如何根据激光雷达应用需求设计和优化相控阵光栅天线。 概述 激光雷达(LIDAR)是“light detection and ranging”的简称,近年来由于在机器人、自动驾驶汽车、高精度测绘等领域的快速应用而备受关注。由于具有高角度分辨率和很快的转向速度,目前最先进的激光雷达能够实现每秒对数百万个点进行测距。现有激光雷达架构中的光束转向机制通常
    影响力
    粉丝
    内容
    获赞
    收藏
      项目客服
      培训客服
      0 0