NVIDIA GPU 持续加速并推进 CAE 发展
本文转载自 Jon Peddie Research 为 NVIDIA 编写的电子书,原文可查看:
https://jinshuju.net/f/lytrl9
计算机辅助工程(CAE)始于 50 年代,简单而言,CAE 指利用计算机解决工程问题。CAE 提出的目的在于利用计算机将工程或生产的各个环节有机组织起来。利用信息集成,赋能工程(产品)的整个开发周期。作为一种资源密集型技术,CAE 是一项仍在等待解决方案的挑战。
最初,Altair、Ansys、Autodesk、Dassault Systèmes(Simulia)、Hexagon MSC 和 Siemens 等主要工程仿真软件提供商长期依赖将 CPU 作为驱动计算的主要引擎时开发出的技术。但随着工程师希望提高真实感和复杂度,需要处理规模更大、更复杂的问题,利用 CPU 驱动可能需要花费数小时、数天甚至数周的时间才能得到处理结果,时间成本相对较高。
CAE 的主要任务是执行大规模并行进程,CAE 通过在模型上创建节点网格来评估模型,然后对节点应用力和条件,评估设计是否适合其用途,网格越密集,仿真就越可靠。NVIDIA 于 1999 年发明首款图形处理器(GPU),为 CAE 实现重大转型创造了舞台。
CPU 适用于广泛的工作负载,多用于集中处理单个任务,而 GPU 则以其灵活性和性能特点,多用于并行计算,可同时处理多个应用程序。GPU 的优势在于单个芯片上的处理单元数量远超 CPU,从这一角度来比较,GPU 处理器的成本远低于 CPU 处理器。与 CPU 相比,GPU 的密度更高而总体拥有成本更低,因此具有明显的性价比优势。
![NVIDIA GPU 持续加速并推进 CAE 发展的图1]() NVIDIA 推出针对 GPU 的开发工具,
NVIDIA 推出针对 GPU 的开发工具,
赋能 CAE 转型
 
那么,如果 GPU 处理器的成本低于 CPU,且 GPU 更适合 CAE 工作负载,那么为什么并非所有软件程序都改为使用 GPU?
其挑战在于,GPU 和 CPU 的工作方式各不相同,需要针对两者采用特定的编程方法。CAE 是基于数十年前的技术开发的复杂应用,为 GPU 调整这些程序并非易事,但 NVIDIA CUDA 和 OpenCL 等编程工具的推出,赋能开发者更轻松地利用 GPU 加速 CAE 开发流程。
NVIDIA 在 2006 年因率先做出承诺和对 CUDA 进行投资脱颖而出。CUDA 是一个用于应用 GPU 加速的专门代码库。作为这项工作的一部分,NVIDIA 一直与 CAE 开发者合作,创建为仿真分析可视化常见任务量身打造的工具。NVIDIA 专注于更新 GPU 技术,推动其进入专用工具开发领域。
![NVIDIA GPU 持续加速并推进 CAE 发展的图2]() CAE 供应商引入 GPU,
CAE 供应商引入 GPU,
探寻最佳应用途径
 
自 2014 年以来,各个主要 CAE 供应商都在某种程度上利用了 GPU 加速。
![NVIDIA GPU 持续加速并推进 CAE 发展的图3]() Ansys Discovery 专为 GPU 构建
Ansys Discovery 专为 GPU 构建
 
不同于 Fluent CFD 工具对大型应用进行移植,Ansys 针对 GPU 从头开始进行设计 Discovery。因为在仿真公司向 GPU 加速过渡的过程中,需要面对的挑战是为 CPU 编写的部分代码可能会降低整体性能,因而 Ansys 有意识地改变策略,从头开始在 GPU 上编写代码软件。Discovery 技术的开发标志着 Ansys 在其传统产品(传统上针对设计周期的结束而开发)上的突破,可赋能设计师在早期评估设计概念,并进行设计迭代和分析。

![NVIDIA GPU 持续加速并推进 CAE 发展的图5]() 西门子借助 NVIDIA AmgX
西门子借助 NVIDIA AmgX
构建 Simcenter STAR-CCM+
 
西门子并未急于进入 GPU 市场,而是在 C++ 工具不断成熟和 NVIDIA Volta 体系架构的推出后,开始着手进入该市场。西门子借助了 NVIDIA 的 AmgX,构建基于 GPU 版本的 CFD 软件 Simcenter STAR-CCM+。该版本专注于车辆外部空气动力学应用,因为这项工作需要的物理模型和物理模型的相关框架移植都较少,但具有巨大的计算用度,有必要进行并行化,而 GPU 加速非常具有吸引力。

Simcenter STAR-CCM+ 基于 CPU (左)和基于 GPU (右)的运行之间的平均压力系数计算结果。
![NVIDIA GPU 持续加速并推进 CAE 发展的图7]() MSC Software 利用
MSC Software 利用
NVIDIA CUDA 框架切入 GPU 编码
 
MSC Software 基于 NVIDIA GPU 编写了新产品 MSC Apex Generative Design,该产品可使用以前需要昂贵的集群才能运行的计算。Hexagon 的开发者借助 NVIDIA CUDA 框架作为切入点,能够立即开始编码。MSC 开发团队使用 MSC Apex Generative Design、CUDA、CuBLAS 和 CuSPARSE 在其生成式设计应用中启用 GPU 加速。

Hexagon 使用 GPU 从头开始构建其产品 MSC Apex Generative Design 。不仅能够更快生成产品,而且将设计、网格化和分析功能融于一体。
MSC Software 产品管理副总裁 Hugues Jeancolas 表示,通过将代码迁移至 GPU,团队不仅可以提高代码的效率,而且鉴于 CPU 核心比 GPU 核心更昂贵,运行代码的成本也相应得以降低。
![NVIDIA GPU 持续加速并推进 CAE 发展的图9]() NVIDIA CUDA 库
NVIDIA CUDA 库
赋能 Dassault Systèmes 电磁分析
 
在适应 CAE 程序以实现 GPU 加速的早期阶段,电磁分析已成为 GPU 加速的早期受益者。Dassault Systèmes 并购的 CST(Computer Simulation Technology),其 CST Studio Suite 基于有限差时域仿真算法,非常适合 GPU 架构。此外,它还受益于大容量 GPU 显存和显存带宽,并且从工作站 GPU 到数据中心计算 GPU 的扩展效果非常出色。CST 团队相信,使用 NVIDIA 的 CUDA 库使得从头开始开发新项目变得更加容易。

使用 Simulia CST Studio Suite 进行的电磁分析,用于评估天线和滤波器的性能和效率。该技术用于确定电磁兼容性和干扰(EMC/EMI),并测量人体在 EM 场中的暴露情况。
![NVIDIA GPU 持续加速并推进 CAE 发展的图11]() Altair 利用 GPU 改进求解器性能
Altair 利用 GPU 改进求解器性能
 
随着 GPU 开发工具的推出,Altair 的工程师开始支持 GPU。他们相信 NVIDIA 持续的技术更新、开发者工具和支持有助于流程的简化。Altair 推出的新款 EDEM 多 GPU 求解器可借助数百万个粒子解决更重大的产业问题,还可以在添加额外的 GPU 卡时提供性能可扩展性。Altair SVP CFD/ 副总裁 David Curry 表示:“与用来处理类似工作负载的 12 个 CPU 相比,添加 GPU 可将 EDEM 的性能提升 20 倍。”

转轮中的 2000 万个粒子在 EDEM 多 GPU 求解器上运行,并根据其速度进行着色。每个粒子及其碰撞均由 EDEM 求解器独立追踪,而 GPU 技术可提高计算性能并增加可解决的问题规模。
![NVIDIA GPU 持续加速并推进 CAE 发展的图13]() GPU 推进 CAE 发展,
GPU 推进 CAE 发展,
多行业应用前景丰富
 
行业用例和开发者实际体验显示,GPU 提供的性能优势和成本优势优于 CPU。此外,针对渲染、CAE、AI/ML、视频编辑和游戏优化的 GPU 种类繁多且与日俱增,可确保为各个功能强大的工作站系统都配备功能强大的 GPU。
数字孪生的兴起为行业引发了新的想象力。在数字孪生行业中,CAE 可基于物理学原理预测物理世界的真实发展状况,各行业开发人员可在数字孪生中查看产品运行状态、预估故障发生时间及后果,以及时改进物理世界的流程设置和运行策略,能为物理世界运行进行“预测”。
NVIDIA 不断优化 GPU 性能,更新 GPU 架构。以核心或每秒浮点运算(FLOPS)来衡量的 NVIDIA GPU 将持续赋能 CAE 行业,加速并推进 CAE 发展。
 
 工程师必备
-  项目客服
-  培训客服
-  平台客服
TOP
 
 



















