第8章 MATLAB数值积分与微分 (1).ppt
第8章 MATLAB数值积分与微分
节选段落一:
第8章 MATLAB数值积分与微分
8.1 数值积分
8.2 数值微分
8.1 数值积分
8.1.1 数值积分基本原理
求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)�法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。
8.1.2 数值积分的实现方法
1.变步长辛普生法
基于变步长辛普生法,MATLAB给出了quad函数来求定积分。节选段落二:
例8-4 用trapz函数计算定积分。
命令如下:
X=1:0.01:2.5;
Y=exp(-X); %生成函数关系数据向量
trapz(X,Y)
ans =
0.28579682416393
8.1.3 二重定积分的数值求解
使用MATLAB提供的dblquad函数就可以直接求出上述二重定积分的数值解。该函数的调用格式为:
I=dblquad(f,a,b,c,d,tol,trace)
该函数求f(x,y)在[a,b]×[c,d]区域上的二重定积分。参数tol,trace的用法与函数quad完全相同。节选段落三:
global ki;ki=0;
I=dblquad('fxy',-2,2,-1,1)
ki
I =
1.57449318974494
ki =
1038
8.2 数值微分
8.2.1 数值差分与差商
8.2.2 数值微分的实现
在MATLAB中,没有直接提供求数值导数的函数,只有计算向前差分的函数diff,其调用格式为:
DX=diff(X):计算向量X的向前差分,DX(i)=X(i+1)-X(i),i=1,2,…,n-1。
DX=diff(X,n):计算X的n阶向前差分。例如,diff(X,2)=diff(diff(X))。
第8章 MATLAB数值积分与微分
8.1 数值积分
8.2 数值微分
8.1 数值积分
8.1.1 数值积分基本原理
求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)�法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。
8.1.2 数值积分的实现方法
1.变步长辛普生法
基于变步长辛普生法,MATLAB给出了quad函数来求定积分。节选段落二:
例8-4 用trapz函数计算定积分。
命令如下:
X=1:0.01:2.5;
Y=exp(-X); %生成函数关系数据向量
trapz(X,Y)
ans =
0.28579682416393
8.1.3 二重定积分的数值求解
使用MATLAB提供的dblquad函数就可以直接求出上述二重定积分的数值解。该函数的调用格式为:
I=dblquad(f,a,b,c,d,tol,trace)
该函数求f(x,y)在[a,b]×[c,d]区域上的二重定积分。参数tol,trace的用法与函数quad完全相同。节选段落三:
global ki;ki=0;
I=dblquad('fxy',-2,2,-1,1)
ki
I =
1.57449318974494
ki =
1038
8.2 数值微分
8.2.1 数值差分与差商
8.2.2 数值微分的实现
在MATLAB中,没有直接提供求数值导数的函数,只有计算向前差分的函数diff,其调用格式为:
DX=diff(X):计算向量X的向前差分,DX(i)=X(i+1)-X(i),i=1,2,…,n-1。
DX=diff(X,n):计算X的n阶向前差分。例如,diff(X,2)=diff(diff(X))。