基于fluent的管道风扇气动噪声分析

1风扇流场分析

1.1案例介绍

风扇可以用于发动机的冷却等很多场景,合理的风扇设计将极大地提高风扇的效率,但由于管道风扇内部流动非常复杂,通过理论计算对其流动进行定性分析十分困难,风洞试验虽然可以得到其流动参数和噪声特性,但也无法对流场内部的流动细节进行描述。

本案例演示如何利用Fluent进行风扇流动特性和噪声特性计算。

1.2几何建模和流场计算域建立

本案例风扇外径为384mm,轮毂直径为140mm,轮毂比为0.365,8扇叶均匀分布,外流场建模充分考虑到进气试验标准,入口区长度至少为入口处管道直径的六倍;而出口区的长度则应保证至少为出口位置管道直径的十倍;至于旋转流体区,是指包含了风扇本体以及周围流场的圆柱体区域,应当保证其尺寸尽量靠近风扇叶片的直径,最终风扇模型和外流场模型分别如下图所示。

基于fluent的管道风扇气动噪声分析的图1

基于fluent的管道风扇气动噪声分析的图2


1.3模型网格的划分

网格生成作为仿真计算中的关键环节,其结果直接控制了后续计算过程的效率与精度。为了保证划分结果的质量,应选择合适的网格尺寸,防止太疏或太密的网格产生,在流量梯度较大的流动区域内,应当尽量提高网格质量(高细密度,较小的歪斜度);至于梯度小的区域可以在保证精度的基础上适当较少网格数目。

本案例旋转流体区由于包含了风扇本体且流动情况最为复杂,为了保证足够的计算精度,该区域网格尺寸最小。管道区网格尺寸较旋转区略大,最终划分结果如下图。

基于fluent的管道风扇气动噪声分析的图3

1.4边界条件设定与旋转模型选取

完成网格生成后需进行边界条件的设置。在流动的计算过程需要设定的边界条件包括:

(1) 流动入口条件:根据吸气试验的要求将流动入口设置为压力边界条件,其中入口处压值定义为大气压力,且气体沿轴线方向流动;

(2) 流动出口条件:根据吸气试验的要求将流动入口设置为压力边界条件,出口压力值定义为 0,即出口处没有外界的作用;

(3) 壁面边界条件:主要为通流区的管壁表面。

对风扇旋转运动的仿真则是通过 MRF 模型来实现的。Fluent 中常用的多运动坐标系模型包括: SMM(滑移网格模型),MPM(混合面模型)以及 MRF(多重参考系模型)。考虑到风扇中气体运动属于定常流动,所以选择计算量相对较少的 MRF 基准。

作为旋转机械仿真中最常使用的模型,MRF 模型计算思路在于:将算法区间分成数个运动相互独立的子区间,先在各子部分间对流场方程进行求解,通过各部分间的交界面完成流场信息的传递。

作为 CFD 模型中唯一运动的旋转流体域,将其边界条件设定为 Fluid(流动域)。在 Fluent 软件中选择 MRF,并且将风机转速定义为坐标系的转速。

基于fluent的管道风扇气动噪声分析的图4

1.5计算方程选择与仿真参数设置

对于风扇内部的稳态流动,采用定常计算模型进行仿真,且计算过程中不考虑重力的影响。利用 SIMPLE 方程完成速度与压力的解耦,将湍流模型定义为 RNG k-epsilon;的双方程模型。

在 Fluent 软件对参数进行设定时,根据实际工况将流体材料定义为空气且认为风扇内部流体不可压缩;由于流动过程中没有热能的交换所以不对能量守恒方程进行求解,只考虑流体连续方程以及动量方程。对于控制方程中的湍动能耗散项以及动量项等使用二阶迎风的离散格式,在迭代过程中使用欠松驰因子以加速收敛。

1.6风扇流场计算结果分析

用Fluent软件对转速为2000rpm的风扇进行计算,得到包括速度矢量图、压力云图结果如下所示。

基于fluent的管道风扇气动噪声分析的图5

基于fluent的管道风扇气动噪声分析的图6

基于fluent的管道风扇气动噪声分析的图7基于fluent的管道风扇气动噪声分析的图8


2风扇气动噪声分析

2.1噪声分析步骤

在 Fluent 中对于风机噪声的仿真是分为两个部分先后完成的:

(1) 首先使用大涡模拟模型(LES)对风扇流场中的瞬态控制方程求解获得流场的动态稳定值,通过计算结果得到风扇的噪声源(即风扇叶片上的动态载荷);

(2) 接下来则是通过求解 FW-H 模型的方法对风机载荷进行分析并得到噪声值。

2.2瞬态流场仿真边界条件设定

声场仿真过程中由于其 CFD 模型与流场极为相似因此不再另行建立模型,而是对原有流场模型的边界条件进行修改。由于噪声特性的仿真属于非定常计算,虽然同样将旋转流体域设为唯一的运动区域,但是改用滑移网格模型对风扇的动叶片与静止区域进行耦合以保证瞬态计算的精确度。

在控制方程的离散过程中使用PISO 算法代替原来的 SIMPLE 方法,相比较而言 PISO 算法在原有“预测-修正”方法的基础上添加了一个再修正过程,对原有计算结果进行了二次改进,有效的提高了计算精度与方程的收敛速度。至于迭代过程中参数的设置,将时间步长设定为0.0001s,而计算的截止频率取 6000Hz,在每个时间步长内计算 40 次,迭代次数为 1000。

2.3气动噪声边界条件设定与后处理

将2.2节中的计算结果与 FW-H 方程相结合在叶片表面使用二重积分获得随需要的声压值信号,在进行噪声参数设定时,以风扇本体为噪声源,而监测点则按照 GB/T2888-2008《风机和罗茨鼓风机噪声测量方法》中的规定设置,取风机前 1m 处噪声结果作为分析。

最终可以得到1m处噪声值计算结果为78dB(A),完成声场计算过程后得到的数据是时域信号,还需使用Fluent 软件后处理功能中的快速傅立叶变换模块(FFT)完成时频转换获得声压级频谱图,如下所示。

基于fluent的管道风扇气动噪声分析的图9

基于fluent的管道风扇气动噪声分析的图10




Ansys.Fluent气动噪声仿真CFD研学季原创

基于fluent的管道风扇气动噪声分析的评论0条

    暂无评论

    基于fluent的管道风扇气动噪声分析的相关案例教程

    ----图文教程---- Fluent_案例解析 旋转机械_水泵 -MRF-多重参考系模型- 01 前言 本篇章介绍一个Fluent关于MRF_多重参考系模型的水泵案例,主要内容如下: ▉ 问题描述 ▉ 分析流程 ▉ 讨论 02 问题描述 图中的水泵,顶部为压力入口,底部为压力出口,扇叶以5820r/min的速度旋转_ 考虑到计算精度及网格数量,将流体域拆分为三部分,其中红色的旋转区域部分网格加密
    ----图文教程---- Fluent_案例解析 旋转机械_水泵 -MRF-多重参考系模型- 01 前言 本篇章介绍一个Fluent关于MRF_多重参考系模型的水泵案例,主要内容如下: ▉ 问题描述 ▉ 分析流程 ▉ 讨论 02 问题描述 图中的水泵,顶部为压力入口,底部为压力出口,扇叶以5820r/min的速度旋转_ 考虑到计算精度及网格数量,将流体域拆分为三部分,其中红色的旋转区域部分网格加密
    上海安世亚太公司 通过一个后倾离心风机的流动实例,Fluent得到了验证。该实例对其流动范围进行了研究。与现有的试验数据相比,稳态多重参考系(MRF)模型和realizable k-e湍流模型可以适当地捕捉风机的几个性能特征。 本文所研究的风机为采用传统转子设计的后倾离心风机。在实验室(按照ANSI/AMCA 210-85、ANSI/ASHRAE 51-1985标准)通过将风机的出风口安装到风洞入
    最近尝试了Fluent与Rocky DEM单向耦合,记录下使用的心得。Rocky DEM被Ansys收购之后,它们之间的耦合几乎无需复杂的配置了,RockyDEM安装上即可实现和Fluent的耦合。这里有一个双层筛的清选段模型,出口装有风机,设计风量为12000m³/h。右上入口落入原粮、清杂(包含长短不一的水稻茎秆),其中原粮占混合物总重的97.5%;右侧通道中有一料滚以52rpm的速度顺时针旋
    前言 CFD是工业仿真领域重要的分支之一,也是高性能计算的主要应用场景之一。本期选取了CFD领域的典型场景,稳态仿真计算案例——基于MRF方法的旋转机械流场分析,我们选用的软件是CFD领域最常用的仿真软件Fluent。我们来看下基于“神工坊”高性能工业仿真平台”的CFD稳态计算,和其他仿真云平台效率对比的情况。 模拟与网格 我们采用某品牌空调室外机作为稳态分析的仿真模型,如下图所示,左侧与后侧的进
    仿真工程师
    影响力
    粉丝
    内容
    获赞
    收藏
      项目客服
      培训客服
      0 17